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requisitos necessários à obtenção do t́ıtulo de Doutor em
Ciências (F́ısica).

Orientador: Rodrigo Barbosa Capaz

Coorientador: Marcos Gonçalves de
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Resumo

Consequences of H doping in the electronic and

optical properties of Carbon Nanotubes

Rafael Rodrigues Del Grande

Orientador: Rodrigo Barbosa Capaz

Coorientador: Marcos Gonçalves de Menezes

Resumo da Tese de Doutorado apresentada ao Programa de Pós-Graduação
em F́ısica do Instituto de F́ısica da Universidade Federal do Rio de Janeiro -
UFRJ, como parte dos requisitos necessários à obtenção do t́ıtulo de Doutor
em Ciências (F́ısica).

As propriedades óticas de Nanotubos de Carbono (NTC) são ditadas por efeitos ex-

citônicos. Em espectros de absorção são observados picos E11, E22, etc, correspondentes a

excitons compostos pelas transições de diferentes pares de bandas de valência e condução.

As propriedades desses excitons dependem da quiralidade e diâmetro do tubo, e t́ıpicos

valores de energias de ligação são da ordem de algumas centenas de meV, o que é muito

maior do que no caso de semicondutores tridimensionais. Além disso, como NTCs são

materiais unidimensionais, as suas propriedades excitônicas são altamente influenciadas

pelo ambiente.

Na última década, vários trabalhos estudaram propriedades óticas de NTCs dopados

covalentemente. Após essa funcionalização, novos picos são observados no espectro de

absorção ótica. Estes novos picos são deslocados para o vermelho (têm menor energia

e maior comprimento de onda) em relação aos picos observados em nanotubos puros

e a magnitude desse deslocamento se relaciona com a natureza qúımica dos grupos de
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funcionalização ligados ao tubo. Ademais, estes picos são correlacionados com regiões

espećıficas dos tubos, indicando que a região com defeito funciona com uma armadilha de

excitons, diminuindo a energia dos picos de absorção. Alguns trabalhos interpretam esses

picos deslocados para o vermelho como um exciton escuro presente em NTCs puros que

se tornam claros após essa funcionalização.

Nesta tese nós combinamos cálculos ab initio e tight binding para NTCs zigzag dopados

com átomos de hidrogênio para estudar a origem f́ısica desse fenômeno. Na estrutura

eletrônica, vemos que a inclusão de defeitos quebra a degenerescência no topo (fundo) da

banda de valência (condução) e cria uma banda de impureza constante (sem dispersão) no

meio do gap. Na absorção ótica, vemos novos picos com energias menores do que o pico E11

original do tubo puro. Nossos resultados ab initio mostram que esses picos são associados

a excitons compostos de transições envolvendo o estado de impureza, que é localizado

em volta do defeito. Portanto, esses picos podem ser relacionados com picos deslocados

para o vermelho observados experimentalmente e sua localização espacial. Além disso,

encontramos novos estados escuros, descartando a possibilidade de que novos estados

claros são provenientes estados escuros dos NTCs puros e que se tornaram claros. Nossos

resultados são reforçados por análises de simetrias da densidade eletrônica dos estados de

valência, condução e de impurezas que determinam que estados são acoplados entre si.

Palavras-chave: Excitons, Nanotubos de carbono, Defeitos, Localização, GW/BSE
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Abstract

Consequences of H Doping in the Electronic and

Optical Properties of Carbon Nanotubes

Rafael Rodrigues Del Grande

Orientador: Rodrigo Barbosa Capaz

Coorientador: Marcos Gonçalves de Menezes

Abstract da Tese de Doutorado apresentada ao Programa de Pós-Graduação
em F́ısica do Instituto de F́ısica da Universidade Federal do Rio de Janeiro -
UFRJ, como parte dos requisitos necessários à obtenção do t́ıtulo de Doutor
em Ciências (F́ısica).

The optical properties of carbon nanotubes (CNTs) are ruled by excitonic effects. In

the optical spectra, the peaks E11, E22, etc, are observed and are related to excitons

composed by transitions of different valence and conduction bands pairs. The excitons

properties depend on the tube chirality and diameter, and typical binding energies are

about a few hundreds of meV, which are much higher than typical binding energies in

3D semiconductors. Additionally, as CNTs are 1D materials, the excitonic properties are

highly influenced by the environment.

In the last decade, several works studied the optical properties of sp3-doped CNTs.

After this functionalization, new peaks are observed in the optical absorption spectrum.

Those new peaks are redshifted with respect to the peaks observed in pristine CNTs and

the magnitude of this redshift is related to the chemical nature of the functionalization

group bonded to the tube. Moreover, these peaks are correlated to spatial regions of

the CNTs, indicating that the defect site works as a trapping potential for excitons that
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lowers the emission energy. Some works interpret this redshifted peak as a dark exciton

from the pristine CNT that becomes bright after the functionalization.

In this thesis we perform a combination of ab initio and tight binding calculations for

zigzag CNTs doped with hydrogen atoms in order to investigate the physical origin of

these phenomena. In the electronic structure, we see that the defect lifts the degeneracies

at the top (bottom) of the valence (conduction) band and induces a flat impurity band

in the middle of the bandgap. In the optical absorption, we see new peaks with energies

lower than that of the pristine E11 peak. Our ab initio results show that these peaks

are associated to excitons composed of transitions involving the impurity state, which is

localized around the defect site. Therefore, these peaks could be related to the experi-

mentally observed redshifted peaks and their spatial localization. Additionally, new dark

excitons are also found, ruling out the possibility that the new bright states result from

dark states of the pristine tube that were brightened. Our results are also supported by

a symmetry analysis of the electronic densities associated to the valence and conduction

bands and the impurity state, which determines which states are coupled.

Keywords: Excitons, Carbon nanotubes, Defects, Localization, GW/BSE
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Chapter 1

Carbon Nanotubes Review

1.1 Carbon Nanomaterials

Carbon nanomaterials have gained attention in the last years, specially sp2 based car-

bon nanomaterials [1, 2, 4, 11–18] due to their physical properties that are very diverse

depending on their dimensionality.

The fullerene molecule (C60) was discovered by Kroto, Curl and Smalley [19, 20] who

won the Nobel Prize in Chemistry in 1996. The C60 molecule is a 0D material composed

of 60 equivalent carbon atoms and it has the shape of a soccer ball. Not just C60 has

been studied but also numerous others including C70, C80, etc [21]. An illustration of this

molecule is shown in Fig. 1.1.

Graphene is a two-dimensional crystal where the carbon atoms are arranged in a

honeycomb structure. It was first synthesized in 2004 by Geim and Novoselov [1,14,17,22]

by mechanical exfoliation of graphite. They won the Nobel Prize in Physics in 2010.

Graphene’s energy dispersion is linear around the K and K’ points of its Brillouin Zone

(BZ) and it is analogous to the physics of quantum electrodynamics for massless Dirac

fermions with speeds 300 times smaller than the speed of light c [2]. New phenomena

arise from this as the anomalous integer quantum Hall effect [2, 23]



2

Figure 1.1: Schematic view of graphene generating others materials, respectively from
left to the right: fullerene (0 dimensional), carbon nanotube (1 dimensional), graphite (3
dimensional). Figure reproduced from [1]

The graphene research called attention to other 2D materials such as MoS2 and WS2

and its van der Waals heterostructures, where two or more layers of different materials

are stacked together bound by van der Walls interactions [24–27]. Multilayer graphene

has attracted attention as well. The electronic and mechanical properties depend on

the number of layers and their stacking. Particularly, we have calculated at DFT level

frequencies of shear and layer breathing modes of N -layer graphene (N = 1, 2, 3, 4, 5, 6)

and we observed that those frequencies depend on the number of layers and the highest

frequency converges to the graphite case [28].
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Another degree of freedom in 2D layered materials is the relative twist angle among

layers. This gave rise to a new sub area of 2D materials called twistronics [29–34]. In

bilayer graphene, twists give rise to Moiré patterns and Cao et. al found a magic angle

around θ ≈ 1.1◦ where superconductivity was observed [35, 36]. We published a work

studying the electronic structure of twisted double bilayer graphene where we observed

flat bands for a range of angles between 1.1◦ - 1.23◦ [37]

Carbon Nanotubes (CNTs) are cylindrical molecules with typical lengths that range

from nanometers to few micrometers and diameters that are less then few nanometers.

They were synthesized for the first time in 1991 [38]. Those tubes may be metallic or

semiconductors depending on their chirality [3]. We published a work that focused on the

mechanical properties of CNTs in which we studied the collapse of tubes due to the van

der Waals attraction between opposite walls [39].

In the 2000 decade, several works studied CNTs and discovered that their optical

properties are ruled by excitonic effects [4, 40, 41]. From 2010 to now, several works

studied optical properties of covalent functionalized CNTs [42–44]. In this work we study

this system theoretically and in the next sections we discuss general properties of CNTs,

and then we review the literature on this topic.

1.2 Carbon Nanotubes Properties

1.2.1 Structure

CNTs can be understood as rolled graphene layers, although CNTs are not synthesized

from graphene. First, we need to look at the graphene structure, which is composed of

two hexagonal sublattices: A and B (see Fig. 1.2). The primitive vectors are given by
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a1 = a

(√
3

2
,
1

2

)

a2 = a

(√
3

2
,−1

2

) (1.1)

and the basis can be defined as

τA = (0, 0)

τB = a

(
2√
3
, 0

)
(1.2)

where a = 2.46Å is the lattice parameter and the bond length is dCC = a/
√

3 = 1.42Å.

The reciprocal lattice vectors are given by

b1 =
2π

a

(
1√
3
, 1

)
b2 =

2π

a

(
1√
3
,−1

) (1.3)

Figure 1.2: Left: hexagonal sublattices A and B of graphene. Right: graphene reciprocal
lattice. First Brillouin zone and some high symmetry points (Γ, M , K and K’). Note
that the reciprocal lattice is rotated by 30◦ in relation to the real space lattice. Figure
reproduced from ref. [2]

The CNT structure [3, 45] can be understood as a rolled graphene sheet defined by a

so-called chiral vector (see Fig. 1.3), given by

Ch = na1 +ma2 (1.4)
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where n and m are positive integer numbers and the tube diameter is given by dt = |Ch|.

The chiral angle is the angle between the chiral vector and a1 as indicated in Fig. 1.3.

The CNTs are classified by the (n,m) indexes. If n = m the tube is called “armchair”,

if n > m = 0 the tube is called “zigzag” and if n > m > 0 the tube is called chiral. Those

structures are shown in Fig. 1.3. The CNT diameter and chiral angle can be written as

dt = a
√
n2 + nm+m2/π and tan θ =

√
3m/(2n+m).

The translation vector T is a vector perpendicular to Ch and its magnitude is the

CNT lattice constant (different from a, which is the graphene lattice constant). T is

given by

T = t1a1 + t2a2 (1.5)

where t1 = (2m + n)/dR and t2 = −(2n + m)/dR and dR is the greatest common divisor

of 2n+m and 2m+ n (gcd(2n+m, 2m+ n)). The length of T is
√

3Ch/dR.

In Fig. 1.3 all atoms of the tube unit cell lie inside the area delimited by Ch and T .

The total number of hexagons inside this area is N = 2(n2 + nm+m2)/dR and the total

number of carbon atoms is 2N .

Figure 1.3: Left: graphene lattice and the CNT chiral and translational vectors. Right:
structure of armchair, zigzag and chiral CNTs. Figure adapted from ref. [3].
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CNTs are periodic just in the direction parallel to T , so the primitive reciprocal vector

is G1 = 2π/T ẑ. Diferently from T , Ch plays a role of generator of rotations, then we can

define a vector G2, which obeys T ·G2 = 0 and Ch ·G2 = 2πµ, where µ = integer. With

that, G2 must be a vector parallel to Ch and its modulus is given by 2πµ/dt. As T and

Ch are orthogonal to each other, so are G1 and G2.

As an example, let’s consider the (n, 0) zigzag CNTs. The chiral vector is given by

Ch = na1, dR = n and T = a1 − 2a2, which is perpendicular to Ch. T modulus is

a
√

3 = 4.26Å and it is independent of n. In this case there are 2N = 4n (N = 2n) carbon

atoms (hexagons) in a unit cell. The reciprocal lattice vectors are integer multiples of

G1 = 2π/(a
√

3)T̂ and G2 = (πµ/na) â1, where T̂ (â1) is the unitary vector parallel to T

(a1).

The cutting line method [3,12,46–48] maps the CNT reciprocal space into the graphene

reciprocal space, so we can obtain an approximate CNT electronic dispersion from graphene.

In Fig. 1.4 we show the G1 and G2 vectors in the graphene reciprocal space. The CNT

allowed states lie over the lines parallel to G1. Those parallel lines are separated by a

distance equal to 2π/dt from each other. The total number of lines is N and each line

has an index µ where it can be µ = −N/2 − 1, ..., 0, ..., N/2 − 1, N/2 (or alternatively

µ = 0, 1, ..., N − 1).

Figure 1.4: Example of cutting lines in graphene BZ.
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1.2.2 Electronical properties

We will explain the basic features of CNT electronic structure based on graphene’s prop-

erties.

In graphene, each carbon atom is bonded to three first neighbors, as shown in Fig. 1.2.

In a tight-binding (see section 2.1) approach, the hamiltonian for pz orbitals of graphene

is given by

H(k) = −t
(

0 f(k)
f ∗(k) 0

)
(1.6)

where t is the first-neighbor hopping and

f(k) =
∑
τi

exp (ikτi) = exp

(
ikxa√

3

)
+ 2 exp

(
− ikxa

2
√

3

)
cos

(
kya

2

)
(1.7)

The electronic dispersion is given by

Egraph(k) = ±t|f(k)| (1.8)

where the + (−) sign stands for the conduction (valence) band.

Around the K point the dispersion is approximately given by E(q−K) ≈ (
√

3ta/2)|q|,

which is a conical dispersion (see Fig. 1.5) and
√

3ta/2 = vF ≈ 10−6m/s is the Fermi

velocity [2, 49]. Graphene is a zero gap semiconductor.

The eigenvectors [2, 12] are given by

ψ(r) =
1√
2

(
pz(r −RA)± eiΘpz(r −RB)

)
(1.9)

where RA(B) is the atomic position of a carbon atom in the sublattice A(B), pz(r −RA)

are Bloch sums over localized pz orbitals in the sublattice A and

eiΘ =
f(k)

|f(k)|
(1.10)



8

Figure 1.5: Graphene’s electronic dispersion. The inset focus on the Dirac cone localized
around the K point. Fig. reproduced from ref. [2]. Note that in this plot second-neighbor
interactions were included as there is an electron-hole asymmetry.

For eiΘ = 1 the above equation is a symmetric (anti-symmetric) combination of atomic

orbitals in case of the sign equals to + (−), corresponding to the valence (conduction)

state.

In a CNT unit cell there are 2N carbon atoms, therefore there are N valence (con-

duction) bands. In the cutting lines scheme each pair of conduction and valence bands is

associated to a cutting line with index µ and those cutting lines placed over the graphene

dispersion give rise to the CNT dispersion, as shown in Fig. 1.6.

Figure 1.6: Cutting lines in graphene dispersion. Figure reproduced from [3].

For a CNT band with index µ at a given kz point of the CNT BZ, the respective kgraph
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point in the graphene BZ is

kgraph = kzG1 + µ
G2

|G2|
(1.11)

Then the CNT dispersion for the bands with index µ is given by [47,50–52]

Eµ(kz) = Egraph

(
kzG1 + µ

G2

|G2|

)
(1.12)

and the corresponding eigenvector is given by [53,54]

ψ
v(c)
µ,kz

(r) =
1√
2N

N∑
j=1

eiΘµ,keik·R
j
Apz(r −Rj

A)± eik·R
j
Bpz(r −Rj

B) (1.13)

where

k ·Rj
A = µθjA + kzz

j
A (1.14)

The pz orbitals in the above equation point in the radial direction. The cutting lines

approach is valid for sufficiently high diameter CNTs. For small diameter cases curvature

effects emerge and there is a rehybridization of atomic orbitals, so an extended tight

binding model including other orbitals is necessary [55].

In expression 1.12, it is possible to see that if the cutting lines pass through the K

point, then the CNT is metallic, otherwise the tube is semiconductor. The condition for

the tube to be metallic is that n−m = 3l with l = integer. For non-armchair ”metallic”

tubes, a small gap opens due to curvature effects. In Fig. 1.7 we show some examples

calculated using eq. 1.12.

Armchair ((n, n)) tubes are metallic and their band crossing is between the Γ and X

points. Semiconductor (metallic) zigzag tubes ((n, 0)) show a minimum band gap (band

crossing) at the Γ point and chiral tubes show two minimum band gaps in two different

points k and −k between Γ and X points.

The main gap in semiconducting CNTs relates to the hopping t by [11,49,52,56]
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Figure 1.7: Example of CNTs energy dispersions calculated using equation 1.12 for (8,0),
(9,0), (4,4) and (4,2) CNTs, respectively from left to right.

Eg(n,m) =
2dCCt

dt
(1.15)

1.2.3 Symmetries

CNTs belong to nonsymmorphic space groups, which means that they belong to space

groups that include screw axes operations (operations that involve fractional translations

of the Bravais lattice) [3, 45].

By looking at the unfolded CNT structure (the area in Fig. 1.3 delimited by Ch and

T ) a general symmetry operation is given by the vector

tp,q = pa1 + qa2 (1.16)

where p and q are integer numbers. Those symmetries operations are screw translations

in CNTs (a combination of a rotation Rφ by an angle φ and a small translation τ , that is

represented by {Rφ|τ}).
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This vector can be written in terms of Ch and T as

tp,q = tu,v =
u

N
Ch +

v

N
T (1.17)

where u = ((2n+m)p+ (2m+ n)q)/dR and v = mp− nq.

Then tu,v can be written as an space group element given by

tu,v = {Cu
N |vT/N} (1.18)

where Cu
N is rotation of u(2π)/N and {E|vT/N} is pure translation of vT/N (E is the

identity operator).

As {Cu
N |vT/N} is a symmetry operation of CNTs, so does {Cu

N |vT/N}s (with s inte-

ger) and {Cu
N |vT/N}N is equal to {E|vT}. The nanotube structure can be constructed by

two noncollinear screw vectors {Cu1
N |v1T/N} and {Cu2

N |v2T/N} and there are numerous

combinations for those vectors as shown in Fig. 1.8. In refs [57, 58] a symmetry tight

binding model is used to calculate electronic properties of CNTs with the advantage of

using just two carbon atoms in a unit cell (as shown in Fig. 1.8). The helical-helical (see

Fig. 1.8-a) construction can be originated by making t1 = a1 and t2 = a2 with 2 atoms

per unit cell, the linear-helical (helical-angular) is originated by making one of the vectors

parallel to a1 and the other parallel to T (Ch), as show in the Fig. 1.8-b (1.8-c) and

the linear-angular construction can be achieved by making t1 = T and t2 ‖ Ch and this

construction does not allow a two atoms unit cell. In the particular case of zigzag CNTs

we have that t1 = T and t2 = Ch/n in the linear-angular construction.

The irreducible representations of the factor groups of CNTs are labeled by the

quasiangular momentum number µ̃ (1 − N/2 ≤ µ̃ ≤ N/2) which is associated to the

{Rφ|τ} operation projected in the circumferential direction [3,59]. The quantum number

µ̃ can be associated to the cutting line indexes.

Now we focus our discussion on zigzag CNTs, as our calculations are performed mostly
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Figure 1.8: Different ways of constructing CNT (4,2) structure: (a) helical-helical, (b)
linear-helical and (c) helical-angular.

for those kind of tubes. For a detailed discussion on armchair and chiral CNTs see

ref. [3]. The group of the wavevector for k = 0 and k = π/T (0 < k < π/T ) of

CNT (n, 0) is isomorphic to the point group D2nh (C2nv) and its character table and

compatibility relations may be found in ref. [3]. The C2nv (D2nh) group has four (eight)

1D representations and (n−1) (2(n−1)) 2D representations. Cutting lines with indexes µ

and−µ are associated to the same 2D irreducible representation with index µ̃. Valence and

conduction bands with index 0 < µ̃ < n have Eµ̃ symmetry, when µ̃ = 0 their symmetry

is A and when µ̃ = n their symmetry is B. The irreducible representations for the valence

and conduction bands are then summarized in the Table 1.1. Those representations play

a crucial role in the discussion of selection rules (see section 1.3.3).

Valence Conduction
Point group D2nh C2nv D2nh C2nv

k = 0, π/T 0 < k < π/T k = 0, π/T 0 < k < π/T
µ̃ = 0 A1g A′ A2u A′

0 < µ̃ < n Eµ̃u,µ̃g Eµ̃ Eµ̃g,µ̃u Eµ̃
µ̃ = n B1g B′ B2u B′

Table 1.1: Irreducible representations for the valence and conduction bands of zigzag
CNTs. If µ̃ < 2n/3 valence (conduction) band has Eµ̃u (Eµ̃g) representation for µ̃ even
and Eµ̃g (Eµ̃gu) for µ̃ odd, and when µ̃ > 2n/3 it is the opposite [3].
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1.3 Excitons in Carbon Nanotubes

The optical properties of semiconductor CNTs are dominated by excitonic effects [4, 60],

then in this section we will first review some aspects of the theory of excitons and then

look at excitons in CNTs. For more detailed reviews see refs [4, 13,56,61]

1.3.1 Excitons

An exciton is bound electron-hole pairs. When an electron is excited from a valence to a

conduction band, a hole is created, then there is a attractive Coulomb potential between

those two quasiparticles. Generally, the exciton wavefunction in a solid is given by

|Ψ〉 =
∑
k,v,c

Ak,v,ca
†
k,cb
†
k,v |G〉 (1.19)

where a†k,c (b†k,v) creates an electron (hole) in the conduction (valence) band, Ak,v,c are

coefficients to be determined and |G〉 represents the system ground state. In our work, the

coefficients Ak,v,c are determined by the Bethe-Salpeter Equation (BSE) and this method

is explained in section 2.3.2.

Another way of writing eq. (1.19) is

Ψ(re, rh) =
∑
k,v,c

Ak,v,cψk,c(re)ψk,h(rh) (1.20)

The excitons are classified as Frenkel excitons if the typical electron-hole distance is

smaller than a lattice constant or Wannier excitons when the electron hole distance is large

when compared to the lattice constant and the pair is weakly bound [62]. In the case of

semiconductor CNTs the exciton size is about a few nanometers (see Table 3.1) [63], so

we focus on Wannier excitons.

In general, Ak,v,c is a localized function in k space, which we can approximate to

Ak,v,c ≈ A0,v,ce
−(k−k0)2/∆k2

for a transition centered in k0. By considering that an ex-

citon is composed by one valence band and one conduction band, we write the exciton
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wavefunction as

Ψ(re, rh) = F (re − rh)ψc(re)ψv(rh) (1.21)

where F (re − rh) is an envelope function. In the Appendix A we calculate the exciton

wavefunction in the empty cylinder model.

We will follow the discussion of refs. [64,65]. Let’s consider an electron in the conduc-

tion band with effective mass m∗e and a hole in the valence band with effective mass m∗h.

Those quasiparticles interact with each other by a Coulomb attraction, so the Schrödinger

equation for the two-particle system is given by

(
−~2∇2

e

2m∗e
− ~2∇2

h

2m∗h
− e2

4πεreh

)
Ψ = EΨ (1.22)

where ε is the macroscopic dielectric constant of the material.

Assuming that the exciton is just composed by one electron in the conduction band

and one hole in the valence band, we can write Ψ as

Ψ = g(R)f(r) (1.23)

where r = re − rh is the electron hole separation and R = (re + rh)/2 is the average

electron-hole coordinate. We can rewrite the gradients as ∇R = (∇e +∇h)/2 and ∇r =

∇e −∇h.

We have that pR = −i~∇R commutes with the above hamiltonian, so g(R) = eiKR.

Then we have the following equation for f(r)

(
p2
r

2µ
− e2

4πεr
− ~

2

(
1

m∗e
− 1

m∗h

)
K · p

)
f(r) =

(
E − ~2K2

8µ

)
f(r) (1.24)

where µ is the exciton reduced mass and is given by

1

µ
=

1

m∗e
+

1

m∗h
(1.25)
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By introducing the following transformation

f(r) = eiαKrF (r) (1.26)

with α = (1/2)(m∗e −m∗h)/(m∗e +m∗h), eq. 1.24 becomes

(
p2

2µ
− e2

4πεr

)
F (r) =

(
E − ~2K2

2(m∗e +m∗h)

)
(1.27)

The above transformations are equivalent to change to the center of mass coordinate

R = (mere +mhrh)/(me +mh).

The solutions for eq. 1.27 are the same of the hydrogenic problem, which we call

Flmn(r). The eigenvalues are given by

En(K) =
~2K2

2(m∗e +m∗h)
− µe4

2~2ε2n2
(1.28)

where the first term is center of mass kinetic energy and the second is the Rydberg series.

When K = 0 the exciton may decay directly by emmiting a photon and if K 6= 0 the

decay process needs phonons due to momentum conservation.

The wavefunction is given by

Ψlmn,K(re, rh) = eiK·(R+αr)Flmn(r) (1.29)

The energy to separate the electron-hole pair (exciton binding energy) is µe4/(2~2ε2) ≈

0.01eV for most bulk semiconductors. The exciton radius is given by aex = a0εme/µ,

where a0 = 0.529Å is the Bohr radius. For semiconductors me/µ > 1 and ε ≈ 10− 20, so

aex ≈ 100a0, which justifies the Wannier approach of extended excitons [62].

Equation 1.28 is valid for 3D excitons with isotropic dispersion. For 2D excitons, the

dispersion in the case of isotropic dispersion is given by [66]

E(K) = E0 + A|K|+ ~2K2

2M
(1.30)
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while 1D excitons have the general dispersion [66]

E(K) = E0 +BK2 log |K|+ ~2K2

2M
(1.31)

In low dimensional materials the exciton binding energies do not follow Rydberg series

because the dielectric function has a spatial dependence [5, 6, 67–71] (see section 1.3.2).

1.3.2 Optical properties

In the 2000’s decade, the scientific community concluded that the optical properties of

CNTs are ruled by excitonic effects [4, 5, 41,63,67,68,72–77], even in the case of metallic

CNTs [78, 79]. The Eii transitions (transitions from the i-th valence band to the i-th

conduction band) are highly dependent on the tube chirality and diameter [40,58,80–83],

as shown in Fig. 1.9.

Figure 1.9: Kataura plot for E11 and E22 transition energies for semiconducting CNTs
and E11 for metallic CNTs. Open and filled circles are for mod(2n + m, 3) = 1 and
mod(2n + m, 3) = 2 (two different families of semiconductor CNTs) respectively and
crossed circles are for metallic CNTs. Fig. reproduced from ref. [4] using original data
from ref. [5].

Exciton binding energies in CNTs are about hundreds of meV (see table 3.1) which are

much higher than usual binding energies in bulk 3D semiconductors. In low dimensional
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materials the screening is nonlocal and shows a very different behavior than in 3D cases,

as most of the electric field lines do not pass through the material (see Fig. 1.10).

For example, in WS2 (a 2D layered material) the potential between two point charges

is not the Coulomb potential but a sum of Struve and Bessel functions [6, 69], which

diverges logarithmically when r → 0 (r is the distance between the two charges) instead

of 1/r (the Coulomb potential) that diverges faster then log(r). Such potential leads to

a non hydrogenic series for the excitonic binding energies. Similar behavior is seen in

CNTs [41, 67,68]. For low dimensional materials (1D and 2D) the dieletric function goes

to unity at both large and small wavelengths, which means that there is no screening at

both short and large separation distances [5, 6, 68–71].

Figure 1.10: Exemplification of how the screening behaves in low dimensional materials. In
bulk 3D materials all electric field lines pass through the material and for low dimensional
materials most of field lines pass through the surrounding environment. Fig. reproduced
from ref. [6]
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Due to its low dimensionality, the surrounding screening environment changes the

emission energies substantially [61,84–89]. Other effects such as electrical doping [90–94]

and stress [95] change peak positions as well. So, the sensitivity of absorption peaks to

those effects may be used in applications on optical devices.

Not all excitons present in CNTs are directly accessible by optical experiments. Direct

optical processes occur when the exciton center of mass momentum is nearly zero (equal

to the photon momentum E/c, which is much smaller than the BZ boundaries), otherwise

finite momentum phonons are necessary. In addition to that, selection rules also dictate

if the optical process is allowed or not [3, 59] (to be discussed in section 1.3.3). The

optical active (inactive) excitons are called bright (dark) excitons. Besides that, dark

excitons play an important role in the temperature dependence of photoluminescence

(PL) experiments [96–99]. The lowest dark exciton energy is lower than the lowest bright

exciton [100, 101], what explains the low quantum efficiency of CNTs [102]. The split

between the first bright and dark excitons decreases when the tube diameter increases [96,

101,103] and in ref. [85] it is found to be proportional to d−2
t (dt is the tube diameter). Dark

excitons become bright when magnetic fields are applied on CNTs due to the Aharonov-

Bohm effect [101].

As excitons are excited quasiparticles, they have a radiative lifetime which is the

expected time necessary to a exciton to decay emitting photons. Typical values for PL

lifetimes for bright excitons range between 20 to 200 ps even for individual tubes [56,

99, 104] and those radiative times increase with the tube diameter [87, 100]. In ref. [99]

the intrinsic lifetime was found to be too large to be determined experimentally. Large

discrepancies for radiative lifetimes arise from extrinsic effects such as defects in the

CNTs [104].
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1.3.3 Selection Rules

Now we discuss optical processes involving excitons in CNTs from a symmetry point of

view. In this section, we consider excitons with center of mass momentum equal to zero.

In optical processes the electromagnetic interaction is given by the following term

H ′ = − e

2mc
p ·A (1.32)

where A is the vector potential and is parallel to the polarization direction of the incident

radiation. The perturbation transforms as a vector of the group of Schrödinger’s equation

[45]. For light polarized parallel to the tube axis, H ′ will transform as the vector z, which

transform as the A2u (A2) Irreducible Representation (IRREP) for achiral (chiral) CNTs

at the Γ point. For light polarized perpendicular to the tube axis, H ′ will transform as

vectors x and y, which transform as the E1 (E1u) IRREP for chiral (achiral) CNTs. For

zigzag CNTs the conduction and valence bands IRREPS are listed in Table 1.1.

Let’s consider a Wannier exciton composed by just one valence and one conduction

band. Using equation 1.21, we may write it as [3, 59]

Ψex(re, rh) = Fν(ze − zh)ψc(re)ψv(rh) (1.33)

where the index ν = 0, 1, 2, ... indicates the envelope function parity that can be even (for

ν even) or odd (for ν odd) under the operation z → −z.

The irreducible representation (IRREP) of the excitonic state will be given by the

direct product of the valence band IRREP, conduction band IRREP and the envelope

function IRREP

D(Ψex) = D(ψc)⊗D(ψv)⊗D(Fν) (1.34)

Here we discuss the optical processes for zigzag CNTs. For more detailed discussions,

see ref. [3].
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Let’s first consider the exciton associated to transitions between bands with the same

µ̃ indexes.

At the Γ point the valence and conduction bands transform as Eµ̃g and Eµ̃u (one has

even and the other has odd parity) IRREPs of the D2nh group. Those representations are

2D and correspond to degenerate states. Then the combination of those two bands leads

to four excitonic states, whose symmetries are given by

Eµ̃g ⊗ Eµ̃u ⊗ A1g = A1u + A2u + Eµ̃′u (1.35)

for ν even (the representation for Fν is A1g) and

Eµ̃g ⊗ Eµ̃u ⊗ A2u = A2g + A1g + Eµ̃′g (1.36)

for ν odd (the representation for Fν is A2u).

As the light polarized parallel (perpendicular) to the tube axis transforms as A2u (E1),

the only bright exciton is the A2u exciton that appears for Fν=even and light parallel to

the tube axis. The transitions associated to this exciton are the Eii transitions.

Now, let’s consider excitons associated to transitions between bands with the different

µ̃1 and µ̃2 indexes.

In this case, the valence and conduction bands may have the same or opposite parities

and bright excitons come from transitions where µ̃1 = µ̃2 ± 1, which are also known as

Ei,±i transitions.

For valence and conduction bands with same parity

Eµ̃π ⊗ E(µ̃±1)π ⊗ A1g(2u) = Eµ̃′g(µ̃′u) + E1g(1u) (1.37)

and for valence and conduction bands with opposite parities

Eµ̃π ⊗ E(µ̃±1)π′ ⊗ A1g(2u) = Eµ̃′u(µ̃′g) + E1u(1g) (1.38)
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where π indicates the parity (u or g).

For light perpendicular to the tube axis, bright double degenerate excitons are present

for ν = odd(even) when the conduction and valence bands parities are the same (opposite).

Optical transitions with the polarization of light perpendicular to the tube axis occur,

although their intensities are much smaller than in cases where the light is parallel to the

tube axis [56,61,100,105]. Group theory predicts whether optical transitions are allowed

by symmetry but can not predict their intensities.

1.4 Exciton Localization

In 2010’s decade, several experimental [7,8,42,43,106–130] and theoretical works [123,126,

130–136] studied the optical properties of CNTs with covalent bonded defects. As those

molecules bind to the CNTs, new redshifted peaks appear in the photolumisnescence (PL)

experiments, with shifts around 100-400 meV from the native E11 peak. Generally those

redshifted peaks are called E∗ or E− peaks. As the defect concentration increases, the E11

(E∗) peak intensity decreases (increases) [7, 42, 109, 114, 120, 124, 125]. Similar redshifts

are also observed theoretically in CNTs with vacancies and Stone-Wales defects [137,138],

which are important in the case of CNTs exposed to high intensity light beams.

As a representative example, we show in Fig. 1.11 results from Ref. [7]. In this exper-

imental work, after the functionalization with 4-nitrobenzenediazonium tetrafluoroborate

of CNT(6,5) a new redshifted peak was observed, called E−11. Both E11 and E−11 peaks

intensities were highly dependent on the defect concentration and the new redshifted peak

shows an intensity higher than the native peak.

The energy difference between the E11 peak and E∗ is proportional to d−2 (d is the

tube diameter) in the case of tubes functionalized with aryl groups [7]. Environment

(solvents, for example) effects also affect those redshifts [108,115,134,135,139] as well as

the conformation and interaction among defects along the tube [115,121,123,131,134,135].

In general, the presence of covalently bonded defects in CNTs is confirmed by observing
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Figure 1.11: (a) The appearance of a new redshifted peak after the functionalization
of CNT(6,5) with 4-nitrobenzenediazonium tetrafluoroborate. (b) Evolution in time of
E11 and E−11 peaks intensities since the functionalization started. (c) E11 and E−11 peaks
intensities for different concentrations of reactants. (a) and (b) correspond to diazonium
salt to carbon molar ratio of 1:300. Fig. reproduced from ref. [7]

the evolution of the ratio between the D peak and G peak in Raman Spectroscopy [7,111,

116,124] and X-ray photoelectron spectroscopy [111].

In Ref. [140] after hydrogen adsorption, redshifted peaks were observed with shifts

fitted to ∆E = 68[meV]/d2, where d is given in nanometers. Those new peaks were

associated to triplet dark excitons as the theoretical predictions matched the experimental

values for the (20, 0) CNT [140].

In Ref. [111] it is observed that the redshifts are given by ∆E = A/d2 for CNT

functionalized with C6F13 groups, (where A = 18.7meV/nm2) suggesting that the new

peaks arises from brightening of dark excitons as those values are close to the splitting

between bright and dark excitons and show the same 1/d2 dependence [96, 141, 142].

Other works associate those redshifted peaks to dark states of the pristine tube that were

brightened by vacancies [106] or covalently bonded groups in the CNTs [7]. Dark excitons

play an important role in the temperature dependence of the PL spectra of CNTs and the
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splitting between dark and bright excitons is about 1-10 meV [96, 142]. Bright to dark

and vice versa mechanism are important to evaluate the radiative lifetimes observed in

PL peaks [7,109]. In ref. [119], variable temperature PL experiments showed that defects

were responsible for the scattering of excitons from dark to bright states.

Hartmann et. al [8] correlated the redshifted peak to dopant sites localization in CNTs

using a 2-color PL imaging technique and observed a blinking mechanism. In Fig. 1.12

we show those PL images, where the redshifted peaks intensities are spatially localized.

Wu et. al [122] accomplished to identify single defects in CNTs by acquiring PL spectra

for all pixels in a full image.

Figure 1.12: Normalized intensities of E11 and E∗11 peaks for CNTs functionalized with
different reactants. The E∗11 signal is spatially localized. Fig. reproduced from ref. [8]

In ref. [94] the localization of pristine native excitons and trions is due to counterions

adsorbed in the CNT surface interacting with free charges in electric doped CNTs with

typical localizations lengths about 4 nm. In Ref. [132] theoretical calculations provided

scaling laws for the exciton localization and redshift of the localized exciton as a function

of the impurity effective charge and distance from the CNT surface. In Ref. [143] trions

trapped in alkyl functional groups have shown binding energies about 100 meV. More

redshifted peaks relate to more localized excitons [126,135].

Those new redshifted excitons have lifetimes higher than the lifetime of the E11 ex-

citon [107, 109]. In Ref. [109] the increase of aryl defects concentration reduce the E11
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excitons lifetime and trapped excitons show lifetimes 5-10 times higher than lifetimes of

free excitons. The decay mechanism is related to the coupling of bright and dark excitons

with phonons [7, 109].

The main explanation is that a trapping potential around the defect captures the

native exciton associated to the E11 peak as locally the defect decreases the NTC electronic

bandgap [42,128]. This redshift depends on the defect chemistry nature, the tube diameter

and chirality [7,109,111,114,116,128]. This shift depends on the Hammet constant for aryl

defects [7,109,111,116,144] or the Taft constant for alkyl defects [144], in other words, it

depends on the capability of this defect to withdraw/donate electrons from/to the CNT.

Even different isomers bonded in the CNT give different redshifts [128]. In [116] meta-aryl

groups showed redshifts about 1-5meV higher than redshifts from para-aryl groups.

In Ref. [131], Time Dependent Density Functional Theory (TDDFT) calculations were

performed for CNTs bonded with two hydrogen atoms (to maintain the aromaticity) in

several configurations. Their results suggest a redistribution of oscillator strengths among

states.

According to Density Functional Theory (DFT) calculations reported in Ref. [111]

carbon atoms near the defect acquire net charges and in Ref. [123] shows a correlation

between the redshift and the net charges of CNT atoms directly bonded to the defect.

CNTs bonded to covalent defects are good candidates for optoelectronical applications

as the chemical nature of the bonded defect and the CNT chirality tunes the redshifted

peak position [8,43,121]. Several works had success to produce room temperature single-

photon emitters at telecom wavelengths towards quantum photonic applications [43,118,

145].

For interesting reviews on the subject, please see references [56,118,128,129].
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Chapter 2

Theoretical Methods

In this work we used three different electronic structure methods: Tight Binding (TB),

Density Functional Theory (DFT) and Many Body Pertubation Theory, specifically the

GW approximation followed by the solution of the Bethe-Salpeter Equation (BSE). Each

one has a level of complexity and, in general, the more complex is the method, more

computational demanding it is and, in principle, more accurate as well.

DFT and GW/BSE are so called ab initio methods, which means that those methods

are fundamental quantum calculations whose necessary experimental information are just

atomic positions. On the other hand, TB is an empirical method where information from

experiments or ab initio data are included such as band gap energies, hopping energies or

effective masses for example.

All of the above methods deals with the following electronic hamiltonian

H = Hel +Hel−ion +Hion−ion (2.1)

where we are considering a system (ie. a molecule or a crystal) where the ion positions

are fixed and we already used the Born-Oppenheimer (BO) approximation. The BO

approximation is justified as we are studying semiconductor CNTs with bandgaps much

higher than the typical ionic kinectic energy. Also, in this work we are just dealing with
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direct vertical transitions, where the crystal momentum variation is null and phonons are

not included.

The first term in eq. 2.1 is given by

Hel = − ~2

2me

∑
i

∇2
i +

e2

4πε0

∑
i>j

1

|ri − rj |
(2.2)

where the first term is the kinect energy and the second is the sum of the Coulomb

repulsion between electron pairs and a electron i is localized at the position ri.

The second term is given by

Hel−ion =
∑
i,A

Vel−ion(RA − ri) (2.3)

whereRA is the ion A position and Vel−ion is the Coulomb attraction between the electron

and the atomic nucleus modified by the screening of core electrons (electrons not involved

in covalent bonding and in deeper electronic levels) [146,147]. As the ions are kept fixed,

we can consider this potential as an external potential over the electrons as

Hel−ion =
∑
i

V (ri) (2.4)

The last term is given by

Hion−ion =
∑
A,B

Vion−ion(RA −RB) (2.5)

and as the ions positions are kept fixed this term is a constant value in our calculations.

Now we can rewrite the electronic hamiltonian more clearly as

Hel =
∑
i

−~2∇2
i

2me

+ V (ri)︸ ︷︷ ︸
h1(ri)

+
∑
i>j

1

4πε0|ri − rj|︸ ︷︷ ︸
h2(ri−rj)

(2.6)

where h1 (h2) is the one-body (two-body) part of this hamiltonian.
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2.1 Tight Binding Calculations

2.1.1 Theoretical Background

The tight binding method consists of writing the hamiltonian eigenvectors ψn(r) as a

linear combination of atomic orbitals ϕ(r− (RA + τi)), where RA is a lattice vector and

τi is the atomic positions inside a periodic cell:

ψn(r) =
∑
A

∑
i

ci,nϕ(r − (RA + τi)) (2.7)

In the case of crystals we can use the Bloch theorem

ψn,k(r) =
∑
A

∑
i

ci,n,ke
ik(RA+τi)ϕ(r − (RA + τi)) (2.8)

Using the Dirac notation and defining ϕiA ≡ ϕ(r − (RA − τi)) we get

|ψn,k〉 =
∑
A

∑
i

ci,n,ke
ik(RA+τi) |ϕiA〉 (2.9)

Then the Schröedinger equation becomes

H |ψk,n〉 = En(k) |ψk,n〉

H
∑
A

∑
i

ci,ne
ik(RA+τi) |ϕiA〉 = En(k)

∑
A

∑
i

ci,ne
ik(RA+τi) |ϕiA〉

(2.10)

Applying e−ikτj 〈ϕj0| in the above equation we get

∑
iA

ci,n,ke
ik(RA+τi−τj) 〈ϕj0|H|ϕiA〉 = En(k)

∑
iA

ci,n,ke
ik(RA+τi−τj) 〈ϕj0|ϕiA〉 (2.11)

On the right side of this equation we have

〈ϕj|ϕi〉 =


1, if i = j and RA = R0

s, if iA and j0 are first neighbors

0, else

(2.12)
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where 1 > s > 0 is called the overlap between first neighbors and we do not consider

overlap between second neighbors and so on.

On the left side we have

〈ϕj|H|ϕi〉 =


E0, if i = j

−t1, if iA and j0 are first neighbors

−t2, if iA and j0 are second neighbors

and so on

(2.13)

where E0 is called the on site energy and ta is the hopping of order a. In general, hoppings

until third order are considered.

In the summations
∑

i, we are summing over all atoms inside a unit cell and counting

the interaction between atoms i and j, which are inside the unit cell and the interaction

of i with all atoms in other periodic images. The generalized eigenvalue problem can be

written in matrix form as

H(k)


cn,1
cn,2

...
cn,N

 = E(k)S(k)


cn,1
cn,2

...
cn,N

 (2.14)

where H(k) (S(k)) is a N × N matrix (N is the total number of atoms in a unit cell),

with matrix elements given by

Hij(k) =


E0, if i = j

−t1eik(τi−τj)
(∑

A e
ikRA

)
, if iA and j0 are first neighbors

−t2eik(τi−τj)
(∑

A e
ikRA

)
, if iA and j0 are second neighbors

and so on

(2.15)

and

Sij(k) =


1, if i = j and RA = R0

seik(τi−τj)
(∑

A e
ikRA

)
, if iA and j0 are first neighbors

0, else

(2.16)
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Once the above problem is solved we obtain a parametric solution En(k) that depends

on hoppings, on site energies and overlaps. Those parameters are then chosen to reproduce

reference data that can be from experiments or other theoretical results. In our work we

use as reference DFT and GW bandstructures.

We also calculated the optical absorption at TB level using the Kubo-Greenwood

equation for the dynamical conductivity for light polarized along the z direction (the

direction parallel to the tube axis) [148]

σzz(ω) =
e2~
iL

∑
k,α,β

fFD(εα)− fFD(εβ)

εα − εβ
| 〈ψα| vz |ψβ〉 |2

εα − εβ + ~ω + iη
(2.17)

where L is the unit cell length, fFD(ε) is the Fermi-Dirac distribution, |ψα〉 is an eigen-

vector of eq. 2.14, εα is an eigenvalue of eq. 2.14, vz = i/~[H, z] is the velocity operator in

the z direction (parallel to the tube axis) and η is a phenomenological broadening. The

optical absorption is given by the real part of σzz.

By expanding the eigenvectors |ψα〉 =
∑

i ci,α |ϕi〉 we get

〈α| vz |β〉 =
∑
i,j

c∗α,icβ,j 〈ϕi| vz |ϕj〉 (2.18)

and each element 〈ϕi| vz |ϕj〉 is approximately given by [149]

〈ϕi| vz |ϕj〉 =
i

~
〈ϕi|Hz − zH |ϕj〉 ≈

i

~
〈ϕi|H |ϕj〉 (zi − zj) (2.19)

2.1.2 Computational Details

For graphene, we just consider one electron per atom in the pz orbital, as the bands

originated from those orbitals are the closest to the Fermi energy and play an important

role in the optical and electronic properties of graphene. For CNTs we also just consider

one electron per atom in the pr orbital, which is analogous to the pz orbital, but it points

in the radial direction.
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In Fig. 2.1 we show TB calculations fitted to reproduce DFT data for the graphene

dispersion. The more terms are included, the best is the fit and optimized parameters are

reported in Table 2.1.

Figure 2.1: TB calculation in graphene with optimized parameters to reproduce DFT
data.

To obtain the optimized TB parameters, we used the genetic algorithm [150]. In

this optimization method, a set (called population) of vectors (called chromosome) with

parameters (called genes) (p1, p2, . . . , pN) are randomly created.

For each vector, an error function is calculated. This error function shows how far

a given property of this vector is far from a reference property. For example, in the

graphene case the error function is given by Error =
∑

k,i(ETB,i(k) − EDFT,i(k))2 where

ETB,i(k) (EDFT,i(k)) is the TB (DFT) dispersion for the band i and our reference data are

DFT calculations. For semiconductor CNTs our error function was defined as Error =
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∑
k,i(ETB,i(k)−EGW,i(k))2 + 103(ETB,g −EGW,g)

2 where ETB,g (EGW,g) is the TB (GW)

gap. The 103 factor was necessary to make the method reproduce the electronic gap.

We take as reference values the GW data and our main interest in this calculation is to

reproduce the GW gap.

The vectors which show the smallest errors are selected, then in the next step a new

population is created where the new chromosomes are created by linear combinations of

the previous selected chromosomes (which called parents). This procedure is repeated

until convergence is achieved as shown in the Fig. 2.2.

Figure 2.2: Parameters convergence for CNT(11,0). p1, p2, p3 and p4 are the overlap s,
first neighbor hopping, second neighbor hopping and third neighbor hopping, respectively.
Blue dots are the parameters that shows the best fits in that generation (step).

In the table 2.1 we show our optimized parameters for graphene, CNT(8,0), CNT(10,0)

and CNT(11,0) and in Fig. 2.3 we show the band structure for CNTs at TB level for CNTs.
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We also performed simpler TB calculations just considering first order neighbors and in

this case, as the electronic band gap depends linearly on the hopping parameter [52], the

hopping parameter was chosen to reproduce the minimum bandgap.

Both methods show similar performance to reproduce the minimum band gaps and

show poor performance to reproduce other energies. For CNTs, when higher order hopping

parameters are included the curvature of bands is better reproduced. It is important to

note that our hoppings are about 4.6 - 6.0 eV which is higher than usual values 2.7-3.0

eV [12, 151] used in other works because our reference data are GW calculations that

usually shows bandgaps higher than DFT calculations.

s t1 (eV) t2 (eV) t3 (eV)

Graphene - 1st 0.066 2.905 - -
Graphene - 2nd 0.259 2.268 0.616 -
Graphene - 3rd 0.191 2.596 0.413 0.163
CNT(8,0) - 1st - 4.814 - -
CNT(8,0) - 3rd 0.119 5.215 0.228 0.350
CNT(10,0) - 1st - 4.681 - -
CNT(10,0) - 3rd 0.132 5.003 0.484 0.330
CNT(11,0) - 1st - 6.019 - -
CNT(11,0) - 3rd 0.143 6.393 0.700 0.575

Table 2.1: Tight binding parameters

2.2 Density Functional Theory

2.2.1 Theoretical Background

Density Functional Theory (DFT) [9] is an ab initio method which aims transforming

the interacting many body problem in a set of noninteracting one particle problems in a

effective potential through the Kohn-Sham equations [152]. This effective potential is a

functional of the electronic density and then, by the variational principle, one may obtain

the ground state for a given collection of electrons in a solid or molecule.

One of the greatest advantages of working with the electronic density instead of

the electronic wavefunction is that we are dealing with a function of three coordinates
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Figure 2.3: Bandsctruture for CNTs (8,0), (10,0) and (11,0). Black dashed lines are
GW calculations, red lines are TB calculations including overlap and hopping until third
neighbors and blue lines are calculations just including hopping between first neighbors.

(ρ(x, y, z)) instead of a many-body wave function that depends on 3N coordinates (ψ(r1, r2, ..., rN )),

where N is the total number of electrons. Even if it was possible to solve this kind of

problem using the N-body wavefunction, the analysis and storage of information would

be a great computational challenge as explained in the Walter Kohn’s Nobel lecture [153],

”In general the many-electron wave function ψ(r1, r2, ..., rN ) for a system of N electrons

is not a legitimate scientific concept, when N > N0 ≈ 103”.

For DFT we work with the hamiltonian in the following form

H = Hele + Vext(r) (2.20)

where Hele is the same in eq. (2.2) and Vext(r) includes the electron-ion interaction and

other external potentials, as for example an electrostatic potential.
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The DFT method is based on the Hohenberg-Kohn theorems [154]. The first theorem

is:

Theorem 1. For any system of interacting particles in an external potential Vext(r), the

potential Vext(r) is determined uniquely, except for a constant, by the ground state particle

density n0(r)

Proof. Suppose that for a given external potential Vext the ground state is |ψ〉 and for

another external potential V ′ext the ground state is |ψ′〉. Our assumption is that both Vext

and V ′ext give the same electronic density n0(r). By the variational principle, the ground

state energies E and E ′ for each potential satisfy

E = 〈ψ|Hel + Vext |ψ〉 < 〈ψ′|Hel + Vext |ψ′〉 ; (2.21)

E ′ = 〈ψ′|Hel + V ′ext |ψ′〉 < 〈ψ|Hel + V ′ext |ψ〉 ; (2.22)

Adding and subtracting 〈ψ′|V ′ext |ψ′〉 in the inequality 2.21 we get:

E < 〈ψ′|Hel + Vext + V ′ext − V ′ext |ψ′〉

E < 〈ψ′|Hel + V ′ext |ψ′〉+ 〈ψ′|Vext − V ′ext |ψ′〉

E < E ′ +

∫
d3r (Vext − V ′ext)n0(~r);

(2.23)

where in the second step we have used 2.22. Repeating the procedure for E ′ in 2.22 we

get

E ′ < E +

∫
d3r (V ′ext − Vext)n0(r); (2.24)

summing 2.23 and 2.24 we have

E + E ′ < E ′ + E, (2.25)
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which is absurd. Since we have assumed the same density n0(r) for Vext 6= V ′ext, we

conclude that this assumption is incorrect, thus proving the theorem.

The second theorem is:

Theorem 2. A universal functional for the energy E[n] in terms of the density n(~r) can

be defined, valid for any external potential Vext(~r). For any particular Vext(r), the exact

ground state energy of the system is the global minimum value of this functional, and the

density n(r) that minimizes that functional is the exact ground state density n0(r)

Proof. We can write the total energy as a functional of the density

E[n] = 〈ψ|Hele + Vext |ψ〉 = F [n] + 〈ψ|Vext |ψ〉 ; (2.26)

where F [n] is an unknown universal functional and 〈ψ|Vext |ψ〉 depends on the system.

In particular for the ground state

E[n0] = 〈ψ0|Hele + Vext |ψ0〉 = F [n0] + 〈ψ0|Vext |ψ0〉 ; (2.27)

Using the variational principle and assuming n 6= n0

E[ψ0] < E[ψ]

〈ψ0|Hele + Vext |ψ0〉 < 〈ψ|Hele + Vext |ψ〉

F [n0] + 〈ψ0|Vext |ψ0〉 < F [n] + 〈ψ|Vext |ψ〉

E[n0] < E[n];

(2.28)

In conclusion, there is a variational principle valid to the electronic density as there is

one for the wave-function.
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Therefore, the first theorem states a one to one relation between the external potential

Vext(r) and the particle density and the second one states that for this potential there is

a functional E[n] for which the global minimum is given by n0(r).

The Hohenberg-Kohn theorems describe an exact many-body theory expressing the

energy of the system as a functional of the electronic density. However, it does not tell us

anything about how this electronic density functional is constructed or how to solve the

problem. For this, the Kohn-Sham ansatz [152] is needed.

Following the Hartree-Fock approach, the Kohn-Sham ansatz [152] aims to reduce

the interacting N -body problem to N one body problems in the presence of an effective

potential that depends on the particle density. It assumes that the exact ground state

density can be represented by the density of an auxiliary system of non-interacting par-

ticles and the auxiliary hamiltonian is chosen to have the usual kinetic energy operator

and an effective local potential. The density of the non-interacting system is

n(~r) =
∑
i

|ψi(~r)|2; (2.29)

where ψi are single-particle states. The auxiliary hamiltonian

Haux = − ~2

2me

∇2 + Veff (~r); (2.30)

The independent-particle kinetic energy is given by

Ts = − ~2

2me

∑
i

〈ψi| ∇2 |ψi〉 ; (2.31)

The classical electronic coulomb interaction is given by the Hartree term

HHartree[n] =
1

2

e2

4πε0

∫
d3rd3r′

n(~r)n(~r′)

|~r − ~r′|
; (2.32)

The Kohn-Sham approach is to rewrite the Hohenberg-Kohn expression 2.26 as
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EKS = Ts[n] +HHartree[n] +

∫
d3rVext(~r)n(~r) + Exc[n]; (2.33)

where the new term Exc, the exchange-correlation energy, includes all the exchange and

the so-called correlation effects. Comparing 2.26 and 2.33 we can see that

Exc[n] = F [n]− (Ts[n] + EHartree[n]); (2.34)

or more explicitly with 〈T 〉 and 〈Vint〉 being the mean kinetic energy and mean internal

energy respectively

Exc[n] = 〈T 〉 − Ts[n] + 〈Vint〉 − EHartree[n]; (2.35)

The last equation shows that Exc is just the difference of the kinetic and internal

energies of the true many-body system from those auxiliary independent-particle system.

If the exact Exc were known, then the exact ground state energy and density of the

many-body problem could be found by minimizing the functional 2.33 with the constraint∫
d3rn(r) = N .

Now we should minimize 2.33 with respect to the electronic density. Since Ts is a

functional of the single-electron orbitals, which are functionals of density themselves, and

all the other terms are functionals of density explicitly, we can minimize the total energy

functional EKS with respect to any given orbital ψ∗i and use the chain rule for n(~r).

δEKS
δψ∗i (~r)

=
δTs

δψ∗i (~r)
+

[
δEext
δn(~r)

+
δEHartree
δn(~r)

+
δExc
δn(~r)

]
δn(~r)

δψ∗i (~r)
= 0; (2.36)

with the orthonormalization condition

〈ψi |ψj〉 = δi,j. (2.37)

From 2.31:
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δTs
δψ∗i (~r)

= − ~2

2me

∇2ψi; (2.38)

and from 2.29:

δn(~r)

δψ∗i
= ψi. (2.39)

By using the Lagrange multiplier method, we get the Kohn-Sham equations

(HKS − εi)ψi = 0, (2.40)

where εi are the eigenvalues and HKS is the effective hamiltonian, given by

HKS = − ~2

2me

∇2 + VKS, (2.41)

in which the Kohn-Sham potential is given by

VKS = Vext +
δEHartree
δn(~r)

+
δExc
δn(~r)

; (2.42)

To solve the KS equations, it is necessary to know the ground state electronic density

to construct the functionals in eq. (2.33), which means that the KS potential depends

on its solution. To overcome this problem, the KS equations are solved self-consistently:

an initial guess for n(r) is necessary (usually a linear combination of atomic orbitals),

construct the KS potential, solve the KS equations and then a new density is calculated

from those solutions {ψi} and then this process is repeated until convergence is achieved,

as shown in the diagram of Fig. 2.4. Such a sequence is called a Self Consistent Field

(SCF) calculation

2.2.2 Computational details

We studied (n, 0) CNTs (n=8, 10 and 11) with and without hydrogen atoms. For pristine

CNTs the unit cell length is 4.2Å with 4n carbon atoms. For CNTs with H, the unit
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Figure 2.4: Schematic algorithm to solve self-consitently the Kohn-Sham equations. The
σ index indicates the spin degree of freedom, which is not discussed in this work. Figure
reproduced from ref. [9]

cell was replicated 4, 6, 8 and 10 times for (10, 0) CNT and just 4 times for (8,0) and

(11,0) tubes, so in our supercells the CNT length is about 4.2 × NcellsÅ and there are

4nNcells carbon atoms. One hydrogen atom was placed over a carbon atom and then this

structure was relaxed allowing the supercell size to change in the direction parallel to the

tube axis. For each case the ratio between hydrogen atoms to carbon atoms is 1 : 4nNcells
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and the defect concentration is 1/0.42Ncells defects per nanometer. The lattice constants

perpendicular to the tube axis were chosen to make the distance of the tube and its

periodic images at least 12 Å as shown in Fig. 2.5.

DFT calculations were done using a normconserving pseudopotential (C.pz-vbc.UPF)

with a cutoff of 60 Ry for scf calculation and a gaussian smearing of 1 mRy using the Quan-

tum Espresso package [146, 147]. K point grids were one dimensional and had 24/Ncells

points. Due to zone folding, supercells with bigger lengths need less k points sampling.

We also studied the (6,5) CNT, for which the cell length is about 40 Å, with 364

carbon atoms. Its length is close to the length of the case where we replicated 10 unit

cells of the (n, 0) tube ( ≈ 42Å ), so we used 3 k points for its grid sampling.

Figure 2.5: Supercell size

2.3 Many Body Pertubation Theory

As explained in the above section, DFT is an exact theory and depends on the quality of

the chosen exchange correlation potential. Extensive benchmarks studies show that recent

Exc functionals [155–158] have good performance to reproduce several solid properties such

as lattice constants, cohesive energies and etc, justifying its large use by the scientific

community [159].
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Despite that, it is known that DFT underestimates electronic bandgaps of semicon-

ductors [160,161] as the bandgap itself is an excited state property and DFT is a ground

state theory, even if one uses the exact correlation exchange functional, it still will under-

estimate the electronic gap.

On the top of our DFT results, we performed GW calculations to include many body

and dynamical effects and then we solved the Bethe-Salpeter equation (BSE) to obtain

the excitonic wavefunctions and the absorption spectra. In the following section the

theoretical frameworks is presented and in the end we show our convergence studies and

the parameters used in our calculations.

The electronic problem is given by the following hamiltonian in the second quantization

H =

∫
dxψ†(x)h(x)ψ(x) +

∫
dxdx′ψ†(x)ψ†(x′)v(r, r′)ψ(x′)ψ(x) + Eion−ion (2.43)

where h(x) is the one body hamiltonian, v(r, r′) is the coulomb potential, ψ(x) =∑
k akφk(x) (ψ(x) =

∑
k a
†
kφk(x)) is the field operator, ak (a†k) is the annihilation (cre-

ation) operator and x = (r, σ) includes both position and spin.

The one body Green function is given by [10,160,162–170]

G(x, t,x′, t′) = −i 〈N |T [ψH(x, t)ψ†H(x′, t′)]|N〉 (2.44)

where ψH(x, t) =
∑

k akφ(x, t) is the field operator in the Heisenberg picture, T is the

time ordering operator and |N〉 is the fundamental state with N particles. For t > t′ it is

the probability that a hole created in (x, t) will propagate to (x′, t’) and for t < t′ it is

the probability that an electron created (x′, t’) will propagate to (x, t).

Using the completeness relation I =
∑

s |N ± 1〉 〈N ± 1| and going to the energy

domain the (Lehmann) spectral representation is given by

G(x,x′, ε) =
∑
s

[
fs(x)f ∗s (x′)

ε− εs − µ+ iδ
+

fs(x)f ∗s (x′)

ε+ εs − µ− iδ

]
(2.45)
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where fs(x) = 〈N |ψ(x)|N + 1, s〉.

The Heisenberg equation of motion for the field operator is given by

i
∂ψ(x)

∂t
= [ψ(x), H] (2.46)

then we obtain the following equation for G (for detailed steps see references [160,163])

[εs − h(x)− VH(r)]G(x,x′, ε)−
∫
dx′′Σ(x,x′′, ε)G(x′′,x′, ε) = δ(x− x′) (2.47)

where VH(r) is the Hartree potential and Σ(x,x′′, ε) is the self-energy. If we set Σ = 0 in

the above equation, the corresponding Green function would be G0

[εs − h(x)− VH(r)]G0(x,x′, ε) = δ(x− x′) (2.48)

and G and G0 are related by the Dyson equation

G = G0 +G0ΣG (2.49)

Introducing the notation G(x,x′) = G(1, 2), where 1 ≡ (x1, t1), G0(1, 2) is the di-

rect propagation from 1 to 2 without exchange-correlation effects, then Σ contains those

interactions in the propagation from 1 to 2.

The self-energy Σ obeys the following set of coupled equations, known as Hedin’s

equations,

Σ(1, 2) = i

∫
G(1, 4)W (1+, 3)Γ(4, 2; 3)d(3, 4)

W (1, 2) = v(1, 2) +

∫
W (1, 3)P (3, 4)v(4, 2)d(3, 4)

P (1, 2) = −i
∫
G(2, 3)G(4, 2)Γ(3, 4; 1)d(3, 4)

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3)d(4, 5, 6, 7)

(2.50)

where W is the screened Coulomb potential, P is polarizability and Γ the vertex function.
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2.3.1 GW approximation

In the GW approximation, the vertex is approximated by Γ(1, 2; 3) = δ(1, 2)δ(1, 3), then

Hedin’s equations become [162,171]

Σ(1, 2) = iG(1, 2)W (1+, 2)

W (1, 2) = v(1, 2) +

∫
W (1, 3)P (3, 4)v(4, 2)d(3, 4)

P (1, 2) = −iG(1, 2)G(2, 1)

Γ(1, 2; 3) = δ(1, 2)δ(1, 3)

(2.51)

The approximation is called GW approximation because the self energy is given by

iGW . The Hedin equations can be solved selfconsistenly but in general just one step is

made to evaluate the self energy, which is called G0W0.

In our work we used the BerkeleyGW code [171–173] to calculate the self energy. Next

we discuss how is this calculation is done. First it is necessary to perform DFT (or other

mean field method) calculations, and from that we have a set of eigenvectors |nk〉 and

eigenvalues Enk. In the code workflow, then the dielectric matrix is constructed.

The static polarizability matrix element is given by

χGG′(q; 0) =
occ∑
n

emp∑
n′

∑
k

Mnn′(k, q,G)M∗
nn′(k, q,G

′)

Enk+q − En′k
(2.52)

where

Mnn′(k, q,G) = 〈nk + q|ei(q+G)·r|n′k〉 , (2.53)

〈nk| and Enk are the Bloch eigenvectors and Bloch eigenenergies calculated at DFT level,

respectively. Sums are performed over occupied and unoccupied states and aG×Gmatrix

is built, where G and G′ are the reciprocal lattice vectors. The convergence parameters

are: the number of empty bands included in the summation, the grid density of k points
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and the amount of G vectors in the polarizability matrix, given by a cutoff energy where

~2|G|2/2me < Ecut.

In Fig. 2.6 we show the convergence of two different matrix elements χ00(q) and

χGmGm(q) (Gm is the highestG vector) as a function of empty conduction bands included

in summation of equation (2.52) for different energy cutoffs to construct the χ matrix.

This calculation was done for pristine CNT(11,0) and q = 0.001(2π/L) (2π/L is the first

Brillouin Zone length).

The dielectric matrix is given by

εGG′(q; 0) = δGG′ − v(q +G)χGG′(q; 0) (2.54)

where v(q) = 4π/e|q|2 is the bare Coulomb potential (unescreened) evaluated in the

reciprocal space.

For low dimensional systems, special attention must be given to the k point sampling

of the dielectric function. For 3D systems the screening is almost uniform, although for

1D and 2D systems the dielectric function varies very quickly in real space. Particularly

for 1D and 2D systems, the dielectric function in the reciprocal (real) space goes to unity

at both small and large q (large and small distances) [68]. In Fig. 2.7 we show how the

k point sampling is important to capture quick variations of ε−1
00 when q → 0.

The screened potential is given by

WGG′(q; 0) = ε−1
GG′

(q; 0)v(q +G′) (2.55)

The quasi particle energies are given by

EQP
nk = EMF

nk + 〈ψnk|Σ(E)− ΣMF (E)|ψnk〉 (2.56)

where ΣMF (E) is the mean field selfenergy given by ΣMF (E) = Vxc, the exchange corre-

lation potential in DFT calculations.



45

Figure 2.6: Convergence of χ00 and χGmGm as a function of the energy cutoff for the
construction of χ matrix. Gm is the last vector used in the matrix evaluation. That is
why χGmGm is not well converged as χ00. In those calculations we used 12 k points in
our grid.

Until now, we worked in the static cases, where ω = 0. To include dynamical effects,

we use the Generalized Plasmon Pole (GPP) method [171, 173]. The selfenergy is given

by Σ = ΣSX + ΣCH , where ΣSX is the screened exchange interaction and ΣCH is the

Coulomb hole term, which describes the charge reorganization due to screening. Those
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Figure 2.7: ε−1
00 for CNT(11,0) with different k point samplings. In those calculations we

used 400 empty conduction bands in the summations.

terms are given by

〈nk|ΣSX(E)|n′k〉 = −
occ∑
n′′

∑
qGG′

M∗
n′′n(k,−q,−G)Mn′′n′(k,−q,−G′)

×
[
δGG′ +

Ω2
GG′(q)

(E − En′′k−q)2 − ω̃2
GG′

] (2.57)

and
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〈nk|ΣCH(E)|n′k〉 = −1

2

∑
n′′

∑
qGG′

M∗
n′′n(k,−q,−G)Mn′′n′(k,−q,−G′′)

×
Ω2
GG′(q)

ω̃GG′(q) [E − En′′k−q − ω̃GG′(q)]
v(q +G′′)

(2.58)

where the auxiliary quantities are given by

Ω2
GG′(q) = ω2

P

(q +G) · (q +G′)

|q +G|2
ρ(G−G′)

ρ(0)
(2.59)

ω̃2
GG′(q) =

Ω2
GG′(q)

δGG′ − ε−1
GG′

(q; 0)
, (2.60)

ρ(q) is the charge density in the reciprocal space and ω2
P = 4πρ(0)e2/m is the plasma

frequency.

In Fig. 2.8 we show that GW has a better performance than DFT in reproducing ex-

perimental values of gaps of semiconductor materials. DFT results always underestimates

the bandgap and we also observe this in our results for CNTs (see Fig. 3.1).

In our convergence studies for pristine CNT(11,0) we see that the bandgap depends

on the number of empty conduction bands included in summations and the number of k

points as shown in Figs 2.9 and 2.10. Those parameters must be converged very carefully

as pointed out in ref. [174].

2.3.2 Bethe-Salpeter Equation

The Bethe-Salpeter Equation (BSE) describes the motion of the two particle Green func-

tion [163,166,172].

The Bethe-Salpeter equation is given by

L(12; 1′2′) = L0(12; 1′2′) +

∫
d(3456)L0(14; 1′3)K(35; 46)L(62; 52) (2.61)

where L(12; 1′2′) is the electron-hole correlation function given by
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Figure 2.8: Theoretical band gap calculated at DFT (using LDA exchange correlation
functional) and GW level versus experimental bandgap for several semiconductors. The
perfect agreement is on the diagonal line. Data from [10]

L(12; 1′2′) = −G2(12; 1′2′) +G1(11′)G1(22′) (2.62)

andG2 (G1) is the two-body (one body) Green’s function. K is the two-particle interaction

kernel and that in the GW approximation is given by

K(34′; 3′4) =
δ[VH(3)δ(3, 3′) + Σ(3, 3′)]

δG(4, 4′)

= −iδ(3, 3′)δ(4+, 4′)v(3, 4) + iδ(3, 4)δ(3′, 4′)W (3+, 3′)

(2.63)

The first (second) term in eq. (2.63) is the called direct (exchange) term that depends

on the bare (screened) Coulomb potential.

In the case of t1, t
′
1 > t2, t

′
2 (the temporal coordinates in L(12; 1′2′)) the exciton wave-

function is given by

|N,S〉 =
∑
v,holes

∑
c,el

AScva
†
vb
†
c |N, 0〉 =

∑
v,holes

∑
c,el

AScvψc(re)ψv(rh) (2.64)
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Figure 2.9: GW gap as a function of the number of conduction bands for different cutoff
energies in epsilon. In those calculations 12 k points were used in grids.

where a†v (b†c) creates a hole (electron) in the valence (conduction) band, AScv are coefficients

to be determined and re (rh) is the electron (hole) position vector.

The BSE becomes

(Ec − Ev)AScv +
∑
cv,c′v′

Kcv,c′v′(ΩS)AScv = ΩSA
S
cv (2.65)

and the kernel K = Kd +KX , is given by

〈vc|Kd|v′c′〉 =

∫
drdr′ψ∗c (r)ψc′(r)W (r, r′)ψ∗v′(r

′)ψv(r
′) (2.66)

and

〈vc|KX |v′c′〉 =

∫
drdr′ψ∗c (r)ψv(r)v(r, r′)ψ∗v′(r

′)ψc′(r
′) (2.67)

and in equation (2.65) ΩS is the necessary energy to create an exciton. In the above
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Figure 2.10: GW gap as function of the number of k points included in calculations. In
those calculations 300 empty conduction bands were included and a cutoff of 10 Ry was
used to construct the dielectric matrix.

equations summations in k are implicit for excitons with center of mass momentum equal

to zero, then kc = kv, where kc (kv) is the crystal momentum for the conduction (valence)

band.

The optical absorption is obtained from the imaginary part of the macroscopic dielec-

tric constant, which is given by

ε2(ω) =
16π2e2

ω2

∑
s

| 〈N, 0|ê · v|N,S〉 |2δ(ΩS − ~ω) (2.68)

where ê is the direction of the incident radiation polarization and
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〈N, 0|ê · v|N,S〉 =
∑
cv

AScv 〈c|ê · v|v〉 (2.69)

For systems where the excitonic effects can be neglected the optical aborption is given

by

ε2(ω) =
16π2e2

ω2

∑
c,v

| 〈c|ê · v|v〉 |2δ(Ec − Ev − ~ω) (2.70)

where Ec(v) can be the quasi particle energies or mean-field energies, and kc = kv as we

just consider direct transitions. In Fig. 2.11 we evaluated the optical absorption including

excitonic effects and not including them by using GW and DFT bandstructures. In the

particular case of CNTs the absolute value of GW corrections are close to the absolute

value of excitonic binding energies, that is why the first peaks positions calculated at BSE

level and at DFT level are close to each other, as shown in the Fig. 2.11.

Figure 2.11: Left: Example of absorption spectra evaluated at three different levels: with
electron-hole interaction (in black) and without it using GW (green) and DFT (red)
results. Right: Bandstructures at DFT (red lines) and GW (black lines) levels. Note that
the GW bands gap is greater than the DFT gap. The bands that give rise to the E11 and
E22 absorption peaks are indicated. Those results are for CNT(11,0).
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In our convergence studies we observed an important dependence of the E11 and E22

absorption peaks, although the difference E22−E11 and binding energies for both excitons

are less dependent on convergence parameters, which means that E11 and E22 peaks are

approximately rigidly translated when changing the convergence parameters.

2.3.3 Computational details

For the evaluation of the dielectric matrix elements we used a cutoff of 8 Ry and we

included 500 conduction bands in the case of CNTs bonded to H and in the case of

pristine CNTs we used a cutoff of 10 Ry and 1000 conduction bands. For both GW and

BSE calculations we used 24/Ncells k points for coarse grids and 4×24/Ncells k points

for fine grids. To construct the kernel and to solve BSE we used 9 (15) conduction and

valence bands for fine (coarse) grid.

For CNT bonded to a single H atom it is not possible to apply perturbative methods, as

this is an open shell system [175]. Most theoretical works avoid this problem by studying

CNTs bonded to two hydrogen atoms, one hydrogen atom and one functional group or

two functional groups [131,133,135]. To overcome this problem, we added (removed) one

electron in our calculations, so the impurity band was totally full (empty). In summary, we

evaluated at DFT level the bandstructure and optical absorption for cases with q=0,±1

(in reduced units) and other GW/BSE results were done only for q=±1. The main

consequence is that our CNTs are doped in two ways: by the covalent defect (chemical

doping) and by the net charge (electrostatic doping). The electrical doping changes the

impurity level position and consequently the excitons energies, so this procedure supports

future developments of optical devices by using chemical doping and electrical doping.
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Figure 2.12: Convergence of E11 (a) and E22 (b) absorption peaks for NTC (11,0) with
respect to the number of K points in coarse grid and number of bands for epsilon and
sigma. The number of K points in the fine grid is eight times the number of K points in
the coarse grid. E22 − E11 difference (c) and binding energy (d) for those two excitons.
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Chapter 3

Results and Discussions

3.1 Pristine Carbon Nanotubes

For semiconductor CNTs, the GW bandgaps are higher than LDA bandgaps as shown in

Fig. 3.1 due to the inclusion of many-body effects. For the armchair CNTs the minimum

gap is located at the Γ point and for the (6,5) chiral tube the minimum gap is slightly

displaced from Γ.

Figure 3.1: Left: bandstructure from of (8,0), (6,5), (10,0) and (11,0) pure CNTs at DFT
(red lines) and GW levels (black lines). The E11 exciton energy and its binding energy are
also indicated for each case. Right: Gap at Γ point at DFT and GW levels as a function
of the tube diameter (in ascending order: (8,0), (6,5), (10,0) and (11,0)).
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Figure 3.2: Absorption spectra for pure CNTs for different chiralities (indicated in the
figure) evaluated at DFT, GW and BSE levels.

In Fig. 3.2 we show the absorption spectra evaluated at three different levels: at DFT

and GW (including many body effects) levels and not including excitonic effects and at

BSE level including excitonic effects. The GW absorption spectra shape is very similar

to the DFT spectra, except by the peaks positions. This is expected, as the main change

in the band structure from DFT to GW (in the CNTs specific case) is the energy gap as

shown in Fig. 3.1.

Interestingly, the first E11 peak at DFT and BSE levels are close to each other due

to a partial cancellation of effects: the many body corrections blueshifts the spectra and

the electron-hole interaction (excitonic effects) redshifts it (not in the same magnitude),

although at BSE level the peaks are sharper than the DFT case.

The exciton binding energy is defined by the difference between the exciton energy

and the respective GW bandgap 1

1The GW bandgap is the difference Ec,k0 − Ev,k0 (in the case of direct gap) where c and v are the
bands that compose the exciton. In our calculations the excitons we study are approximately composed
by one conduction and one valence bands.
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Eb = Eex − Eg (3.1)

The E11 exciton energy and its binding energy in our calculations are indicated in

Fig. 3.1. For CNTs the binding energies are much higher than usual semiconductors, due

to the poor screening of 1D materials [68, 176]. In table 3.1 we summarize some results

for some excitonic properties of the E11 exciton in pristine CNTs. The calculated E11

emission energy is close to experimental and theoretical values, except in the case for the

(10,0) CNT. The binding energy is also close to previous reported values (with maximum

differences about 200 meV).

We calculate the exciton size by two times the standard deviation (σ) of the electronic

density using the following equation

σ =

√∫ ∞
−∞

ρ1D(ze − zh)(ze − zh)2dze (3.2)

where ρ1D is the one dimensional electronic density (ρ1D(x, y, z) =
∫
dxdyρ(x, y, z)) and

ze (zh) is the z coordinate of the electron (hole). The hole position is kept fixed above one

given carbon atom. In the Fig. 3.3 we show an example of the exciton wavefunction. The

exciton sizes are about a few nanometers and the higher is the exciton binding energy less

spread is the excitonic wavefunction, as expected. This trend is also chirality dependent

as the exciton sizes for the (11,0) and (6,5) tubes are about the same, although the (11,0)

CNT shows higher binding energy [85,141].

The overall agreement between our results and previous experimental and theoretical

is good, as shown in Table 3.1.
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Figure 3.3: Example of exciton wavefunction as a function of the distance between the
electron and the hole for the pristine (10,0) CNT. The dashed black curve is given by
e−(ze−zh)2/σ2

where σ is given by eq. 3.2.

3.2 Band Structure of Covalently Doped Carbon Nan-

otubes

We performed calculations of H doped CNTs (CNT-H) for (8,0), (10,0) and (11,0) CNTs

as explained in section 2.2.2.

At both DFT and GW levels we observe a split of the double degenerate valence

(conduction) bands [133,177] and the emergence of an impurity band in the middle of the

bandgap, as seen in other theoretical works [130, 138]. For CNT(10,0) the first valence

(conduction) band splits in two bands (see Fig. 3.4), where one of them is close to the

original double degenerated band, which we call v1 (c1) and the other one splits by ∆v

(∆c), which we call v1′ (c1′) as indicated in Fig. 3.4.

We observed variations of about 20meV (40meV) in the main gap at DFT (GW) level

in relation to the pristine CNT main gap at the Γ point (transition v1 to c1) by varying the

number of unit cells and in our TB calculations no substantial variation was observed.
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(n,m) E11 (eV) Eb (eV) Size (nm)

(8,0) This work 1.565 1.208 2.0
Exp 1.598 [80]
Theo 1.55 [100] 0.99 [100,141]

(10,0) This work 0.831 0.816 3.9
Exp 1.073 [80]

1.05 [126]
Theo 0.76 [141]

(11,0) This work 1.121 0.915 2.5
Exp 1.19 [77]

0.923 [80]
1.191 [75]
1.17 [121]

Theo 1.21 [77] 0.76 [141]
1.062 [95] 0.860 [95]
1.2 [121]

(6,5) This work 1.332 0.902 2.5
Exp 1.272 [40] (2.0 ± 0.7) [63]

1.270 [80]
1.24 [94]

1.265 [116]
1.283 [75]

Theo 1.25 [121]
Table 3.1: Exciton properties of pristine CNTs

Other theoretical works argue that the defect inclusion reduces locally the electronic

bandgap [128], although in our results and other theoretical calculations [130,133,138] no

substantial variations were observed.

For CNT(10, 0), by varying its supercell size to include 4, 6, 8 and 10 unit cells (in

each unit there are 40 carbon atoms), we observed that the ∆v and ∆c splits decrease

as the supercell size increases (defect concentration decreases) and there is a trend that

those splits extrapolate to zero when the supercell size goes to infinity (see Figs. 3.5 and

3.6). On the other hand, the mean value of the impurity band converges to a constant

value and its width goes to zero as shown in Fig. 3.6. This observation is confirmed

with our TB calculations as indicated in figure 3.7. In ref. [7] splits of LUMO and

HOMO levels of about 105-326 meV were observed in DFT calculations for 4nm long
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Figure 3.4: Band structure of pristine (black dashed lines) and CNT(10,0)-H (red solid
line) calculated at DFT level. The double degenerate valence (conduction) band of pristine
CNT splits in the v1 and v1′ (c1 and c1′) of the functionalized CNT and an impurity band
i emerges in the middle of the bandgap.

(6,5) CNTs functionalized with benzene 2. In ref. [130] splits of 8 meV (2 meV) in the

valence (conduction) band were observed in (6,5) CNTs functionalized with acacPd(IV)-

4-carboxylatephenyl. In refs [133, 138] different defects also split degenerate valence and

conduction bands in CNT(8,0). Those theoretical works shows a good agreement with

our results for CNT functionalized with hydrogen atoms.

In our calculations with net charge q = +1 (q = −1), as the supercell size ranges

from 1.7-4.2 nm, the hole (electron) doping varies from 0.60 to 0.24 holes (electrons) per

nanometer. At both DFT and GW levels, we do not observe substantial variations in the

main gap, although both the splits and the impurity state show relevant variations with

the doping level. Other ab initio studies for pristine CNTs shows that doping changes the

electronic bandgap and particularly hole doping decreases it about 0.8 eV for a doping of

2In ref. [7] the calculations were performed for finite CNTs (without periodic boundary conditions).
Each CNT end was functionalized with hydrogen atoms.
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Figure 3.5: Bandstructure at DFT level of CNT(10,0)-H with different supercell sizes
(indicated in the figure) and different net charges. Red lines, blue lines and green lines
are q = 1, q = −1 and q = 0 cases respectively.

0.6 holes/nm, although the first absorption peak changes only by about 0.1 eV [91, 92].

Experimentally, a band gap reduction of 0.54 eV was measured at a doping density of 0.7

electrons/nm [93] and the intensity of the E11 absorption peak decreased when voltage was

applied to the tube [90,94]. In our case, the doping changes the impurity level of CNT-H,

but for pristine CNTs the doping changes the occupation of the valence (conduction) band

for positive (negative) doping.

We also performed calculation for CNT(8,0)-H and CNT(11,0)-H with four unit cells

and net charges q = 0, ±1 (0.6 holes/electrons per nm). Results are summarized in Fig.

3.8. The splits tend to be smaller for larger diameters, as shown in Fig. 3.8.

In sections 3.4 and 3.5 we will look at two relevant excitons: E11 and E−. The E11

exciton is the same of pristine CNT and is composed by the c1 and v1 bands and the

E− exciton is composed by the v1′ and i (i and c1′) bands for calculations with q = 1

(q = −1). For the CNT(10,0)-H the important bands are c1, c1′ , v1, v1′ and i, and now

we analyze them at the Γ point.

For the E− exciton the conduction (valence) band is the impurity band for q = 1(q =
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Figure 3.6: Main gap (a), splits of the first two valence bands (b), splits of the first
two conduction bands (c) and impurity level (d) as function of the number of unit cells
included in calculations (lower label) or the linear concentration of defects (upper label).
Square (circle) symbols correspond to calculations at GW (DFT) level and red, blue and
green symbols are calculations with q = +1, q = −1 and q = 0 respectively.

−1) systems. The impurity wavefunction is itself localized around the impurity, what

agrees with other theoretical works [130]. According to our plots of the electronic density

for the impurity band (ρi(r) = ψi(r)ψ∗i (r)) can be written approximately as ρi(r) ≈

e−z
2/σ2

ze−θ
2/σ2

θf(z, θ), where f(z, θ) is a periodic function in both z and θ coordinates. In

Fig. 3.9 we show plots of the ρi(r) over the tube surface, showing that it is localized

around the impurity. Using the effective mass approximation the exciton wave function

is given by

Ψex(re, rh) = F (re − rh)ψc(re)ψv(rh),
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Figure 3.7: TB dependence of the splits of the valence (conduction) band and the impurity
state as a function of the unit cells included in the calculation for CNT(10,0)-H. TB
parameters used for the calculation are the ones in the first row of table 3.2.

Figure 3.8: DFT bandstructures for (8,0), (10,0) and (11,0) CNTs with four unit cells
(defect concentration equals to 0.6 defect/nm). Red lines, blue lines and green lines
correspond to net charges of q = 1, q = −1 and q = 0 respectively.
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Figure 3.9: Logarithm of the electronic density in polar coordinates for the impurity
state in calculations with 4 (a), 6 (b), 8 (c) and 10 (d) unit cells of CNT(10,0)-H. The
atomic positions are presented as well. The linear electronic density in the axial and
radial directions are also presented and were calculated by |ψ(z)|2 =

∫
rdrdθ|ψ(z, θ, r)|2

and |ψ(θ)|2 =
∫
rdrdz|ψ(z, θ, r)|2. The hydrogen atom is represented by the pink star at

the origin.

where F (r) is the envelope function. If ψc(re) or ψv(rh) is localized, then so is the exciton

wavefunction. We can conclude that the exciton composed by the impurity band is

localized around the defect. In Appendix A we calculated analytically an excitonic wave



64

Figure 3.10: Electronic density in polar coordinates for the c1, c1′ , v1′ and v1 bands states
in calculations with 10 unit cells of CNT(10,0)-H. The atomic positions are presented as
well. The linear electronic density in the axial and radial directions are also presented
and were calculated by |ψ(z)|2 =

∫
rdrdθ|ψ(z, θ, r)|2 and |ψ(θ)|2 =

∫
rdrdz|ψ(z, θ, r)|2 .

The hydrogen atom is represented by the pink star at origin.

function composed of a localized impurity wave function.

For CNT(10,0)-H we also observed strong perturbations around the hydrogen atom for

the c1′ and v1′ eigenvectors and c1 and v1 are less perturbed (see Fig. 3.10). It is interesting

to note that in the angular coordinate, the c1 and v1 (c1′ and v1′) wavefunctions show a
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node (maximum) for the electronic density for θ = 0, which is the angular coordinate of

the hydrogen atom. The impurity state also shows a maximum for θ = 0 which agrees

with the coupling of the impurity state with v1′ (c1′) for the case q = 1 (q = −1) and the

uncoupling between the impurity state and v1 or c1.

We evaluate the localization of the defect-state wavefunction by analyzing the z-

projected electronic density ρ(z) =
∫
dxdyψ(x, y, z)ψ∗(x, y, z) in Fig. 3.11 for various

supercell sizes (this particular figure shows only the q = 0 case). In a more quantitative

way, we also estimate the localization length by calculating the standard deviation σ in a

supercell, using the following equation

σ =

√∫ L/2

−L/2
ρ(z)(z − z)2dz (3.3)

where we make sure to place the supercell origin at the defect position in order to avoid

spurious periodic supercell effects in the integration. The localization length is given by

δ = 2σ. In Fig. 3.12 we show the localization lengths δ as a function of the supercell

size and for q = 0,±1. In our largest supercell size (L ≈ 4.2nm) the localization length

does not converge as expected, so we fit our data with the expression δ(L) = δ0(1 −

exp (−L/Lc)), where δ0 is the converged localization length and Lc is the length where

δ ≈ 0.63δ0. By looking at the fits in Fig. 3.12 the localization length converges for

supercell sizes about 8 nm (twice our largest value) and it converges to 1.7 nm, 2.0 nm

and 2.6 nm for q = 0, q = −1 and q = 1 cases, respectively.

3.3 Impurity Level

As we will discuss in sections 3.4 and 3.5, the redshifted absorption peak is related to

optical transitions involving the impurity state, therefore the exciton emission energy is

determined by it. In that sense, from an application point of view, we propose that

electrostatic doping may be used to control the exciton energy. In other words, the
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Figure 3.11: Linear electronic density along the z direction for the impurity band for
calculations with L= 4(a), 6(b), 8(c) and 10(d) unit cells. Black dashed lines are gaussian
functions e−(z/σ)2

, where σ is the standard deviation given by eq. 3.3. Those results are
calculations at DFT level with q = 0.

chemical doping breaks the CNT symmetry (see section 3.5) and creates impurity states

and the electrostatic doping tunes the impurity state level. To validate this point, we

performed DFT calculations for the CNT(10,0)-H changing the defects concentration and

electron (hole) doping and these results are shown in Fig. 3.13. Interestingly, by changing

the defect concentration and the doping in our calculations, we observed variations of

about 0.5 eV in the impurity level and 0.1 (0.2) eV for the split of the valence (conduction)

band.

We also modified our TB model to include hydrogen atoms. In order to reproduce our

DFT results for the splits and the impurity level, we included a first neighbor hopping

tHC , between the hydrogen atom and the neighboring carbon atom and on-site energies

E0H for the hydrogen atom.

To obtain the best parameters tHC and E0H , we performed TB calculations by changing

these parameters and we compared with our DFT results for the CNT(10,0)-H in the case
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Figure 3.12: Localization length of the impurity state calculated at DFT level. Green,
red and blue symbols correspond to q = 0, q = 1 and q = −1, respectively. This data was
fitted with the expression δ(L) = δ0(1 − exp (−L/Lc)) (dashed lines) in each case. The
fitted parameters are shown in the legend of the figure and their unit is nanometers.

we have four unit cells (0.6 defects per nm) and doping q = 0, ±1 (0.6 holes/electrons per

nm). The results are summarized in Fig. 3.14, where the splits and impurity level are

scaled by the main gap and tHC and E0H are scaled by tCC = 4.681eV, the carbon-carbon

hopping reported in table 2.1. The optimal parameters are reported in table 3.2.

tHC(eV) E0H(eV)
q = 0 1.535 −0.197

q = 1 0.868 −0.385

q = −1 2.682 0.122

Table 3.2: Optimal TB parameters that reproduce DFT results for CNT(10,0)-H with
four unit cells and net charges q = 0,±1. The hopping between carbon atoms is still
tCC = 4.681eV and on-site energies for carbon atoms are zero.

In our calculations we use periodic boundary conditions and one hydrogen atom per

supercell with Ncells unit cells. Therefore, the simulated system is an infinite CNT with

H atoms distant from each other by the distance NcellsL (L ≈ 4.2Å) and all of them
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Figure 3.13: Impurity state and split of the conduction and valence bands calculated at
DFT level for different quantities of defect concentration and doping. The doping was
calculated until the maximum (minimum) value to make the impurity band totally full
(empty).

pointing in the same direction. This situation is not what is expected experimentally,

so to study more realistic cases we performed TB calculation of CNT(10,0) bonded to

randomly arranged H atoms over the tube surface for different concentrations of defects.

In calculations with one single defect, we observed one impurity state in the middle

of the bandgap. Differently from that, in the case with NH H atoms bound to the tube

we observed NH bands in the middle of the bandgap. We also observed that different

samples with the same concentration of defects presented different distribution of the

impurity bands on the gap as shown in Fig. 3.15.

Therefore, we performed 100 calculations (each one for a different random sample) for

different defects concentrations (ranging from 0.2 to 23.8 H atoms per nm) and from this
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Figure 3.14: Impurity level Ei and splits ∆v and ∆c varying the parameters tHC and E0H

(see text) calculated at TB level for the CNT(10,0)-H with four unit cells. Black, red and
blue solid lines are level curves where the difference between TB results and DFT results
for CNT(10,0)-H with q = 0, q = +1 and q = −1, respectively, are less than 10−3. In the
first panel dots are the best TB parameters to reproduce the DFT impurity level and are
listed in table 3.2

data we did some statistical analysis of the impurity levels considering all samples. Those

calculations were performed for (10,0) CNT, which has approximately 95 carbon atoms

per nm, then in the calculations with the largest defect concentration of 23.8 H atoms

per nm the H to C atoms ratio is 1:4 and the supercell included 20 unit cells (its length

is 8.4 nm and it contains 800 carbon atoms).

We observed that both the mean value and the dispersion of the impurity levels in-

crease with the defect concentration, as shown in Figs. 3.16 and 3.17. The valence and
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Figure 3.15: TB band structure of CNT(10,0) bonded to 1 H (a) or 10 H (b and c)
atoms. (b) and (c) are calculations done with the same concentration of defects but are
different random samples. Those calculations were done with 20 unit cells in the supercell
(supercell length is 8.4 nm and it contains 800 carbon atoms).

conduction band splits also increase with the defect concentration, as shown in Fig. 3.17.

In the ordered defects case the splits increase linearly and for the random defect case

those splits converge to constant values below 0.1 eV. By looking at the Density of States

(DOS) in Fig. 3.16 we observed a high intensity peak in the middle of the bandgap.

3.4 Optical Properties of Covalently Doped Carbon

Nanotubes

Following the results of the previous section, we calculated the optical absorption of CNT-

H. In Fig. 3.19 we show results evaluated at DFT and BSE levels for CNT(10,0)-H.

We observed a variety of new peaks in agreement with experimental and theoretical

works [7, 42]. In the optical absorption for CNT with charge +1 (−1) we observed new

redshifted peaks at BSE level, which we call E− and those peaks are related to transitions

from the v1′ band to the impurity band (from the impurity band to the c1′ band) that are

redshifted with respect to the peaks associated to the transition v1 → c1 (E11). In section

3.5 we discuss those results from a Group Theory point of view.

At the BSE level the E11 peaks are blueshifted with respect to the pristine case by
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Figure 3.16: Distribution of impurity levels considering all 100 calculations for several
defect concentrations, indicated in each subpanel which units are defect/nm. Black dashed
lines represent the bottom of the conduction band and the top of the valence band is set
to zero.

Figure 3.17: Impurity level (upper panel), split of the conduction band (middle panel)
and split of the valence band (lower panel) as a function of the defect concentration.
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Figure 3.18: Mean DOS for several defect concentrations. The linewidth in each case is
twice the standard deviation of the samples.

Figure 3.19: Absorption spectra at DFT (left) and BSE (right) levels for CNT(10,0)-H
with charge q = 0 (green curves), q = 1 (red curves) and q = −1 (blue curves) for different
supercell sizes. Black dashed lines are results for E11 in pristine CNT (q = 0) for reference.



73

about 300 meV. In experimental works the inclusion of defects changes the intensity of the

original E11 peak but does not change its position [7,42]. These blueshifts are roughly 0.2

eV. Typically, BSE calculations have uncertainties in the order of 0.1 eV (in comparison

to experimental values). We believe that those blueshifts are due to the convergence

parameters of our calculations as those ab initio calculations are very challenging, but

they do not affect the main conclusions of this work. Based in our convergence studies

(section 2.3.3), the E11 and E22 energies are very sensitive to the convergence parameters,

although the E11−E22 difference and the binding energy for pristine CNTs are less affected

by these parameters (see Fig. 2.12). For this reason, whenever possible, we will focus our

analysis on the difference between E− and the corresponding E11 peak.

Interestingly, we observe similar trends in DFT calculations: redshifted peaks related

to transitions to (from) the impurity for q = +1(q = −1) systems. We also observe

a two-peak structure near the E11 transition, corresponding to a split of the v1 → c1

and v1′ → c1′ transitions. These splits are related to the valence and conduction band

degeneracy breaking discussed in the previous sections. At the BSE optical spectra, such

v1′ → c1′ transitions appear to have very small intensities and the oscillator strength

seems to shift to the v1 → c1 transition.

As the E11 energy at the BSE level varies with the supercell size (much more than for

DFT results) we analyzed the energy differences ∆E = E−E11 in Fig 3.20, by shifting the

spectra and placing the E11 peak at origin of the energy axis in each case. The redshifts

are about 0.2-0.6 (0.2-0.4) eV for systems with net charge q = +1 (q = −1). Nagatsu

et. al [140] fitted experimental data for redshifts due to hydrogen absorption in several

CNT chiralities and diameters and obtained an expression ∆E = 68/d2[meV] (d is the

tube diameter), so for (10,0)CNT-H the redshift is expected to be (110 ± 10) meV 3. In

this experiment the CNTs were functionalized after exposed to atomic hydrogen gas and

information about the defect concentration over the tube surface is not available [140].

3The error of 10 meV is due to the data dispersion in ref. [140]
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Figure 3.20: Redshifts in the absorption spectra taking the E11 transition energy as
reference and at BSE level for CNT(10,0)-H with charge q = +1 (red lines) and q = −1
(blue lines). Supercell sizes are indicated in the figure.

However, this is an important piece of information for comparing theory with experiment.

In Figs. 3.21 (g) and (h), we show our calculation of the redshift as a function of defect

the concentration. For both charge states, there is a monotonic increase of the redshift

as the defect concentration decreases (larger supercells), at both BSE (squares) and DFT

(circles). The smallest calculated redshifts are about 0.25 eV. Therefore, to provide a

quantitative agreement with experiment [140], the defect concentration in the experiments

would have to be larger 0.6 defect/nm (our largest calculated value, corresponding to 4

unit cells).

In ref. [126] experimental results for CNT(10,0) functionalized with 4-methoxybenzene

and 4-bromobenzene show a redshift of about 120 meV (information about the defect

concentration was not available). Time Dependent DFT (TDDFT) calculations for finite

12 nm length CNT(10,0) functionalized with 4-bromobenzene found redshifts from 20 to
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270 meV, depending on the defects configurations [126] 4. In ref. [121] PL measurements

for CNT(11,0) functionalized with 4-methoxybenzene at 4K were done for 13 different

samples and in just two cases the E11 is visible. The E− peaks are in the range 0.95-0.98

eV, which corresponds to redshifts equal to 220-190 meV [121].

Figure 3.21: (a-d): Peak positions for E11 (black symbols) and E− (red symbols) excitons
calculated with BSE (a and b) and at DFT level (c and d). (e-f): Binding energies for E11

(black symbols) and E− excitons (red symbols). (g-h) Redshifts (|E− − E11|) calculated
using BSE (squares) and DFT (circles) results. Left (right) panels are results for q = 1
(q = −1).

In the other panels of Fig. 3.21 we summarize the concentration (or supercell size)

4In those calculations two defects are bound to the CNT: one hydrogen atom and the desired functional
group. The configurations may be ortho, meta or para. This is done to avoid calculations with open
shells.
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dependence of the E11 and E− peaks. Panels (a) and (b) show, for both charge states,

the BSE optical transition energies (at the peaks) for E11 black (upper triangles) and

E− (red lower triangles). The same quantities are shown in panels (c) and (d), at the

DFT level. In DFT, it is clear that E11 energies are independent of defect concentration,

but E− increases with defect concentration. In panels (e) and (f), we show that excitons

binding energies are roughly independent on defect concentration for both E11 (red) and

E− (black), except perhaps for the case of 4 unit cells and negative charge state. In all

cases, E11 and E− have roughly the same binding energies. Finally, as we commented

above, we show in panels (g) and (h) that, as the concentration of defects increases, the

redshift, both at DFT and BSE levels, decreases.

Figure 3.22: Absorption spectra for (8,0) (a and b), (10, 0) (c and d) and (11, 0) (e and
f) without defect (black lines) and with hydrogen atoms (0.6 H atoms per nm) and with
charge q = 1 (red curves) and q = −1 (blue curves). DFT results are in the left and BSE
results are in the right.

In Figs. 3.22, 3.23 and 3.24 we search for the diameter dependence of exciton prop-

erties by analyzing the results for (8,0), (10,0) and (11,0) tubes, using the same defect
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Figure 3.23: Redshifts in the absorption spectra of (8,0) (a), (10, 0) (b) and (11, 0) (c)
without defect (black lines) and with hydrogen atoms (0.6 H atoms per nm) and with
charge q = 1 (red curves) and q = −1 (blue curves) at BSE level.

concentration of 0.6 hydrogen atoms per nm (4 unit cells). Figure 3.22 shows the ab-

sorption spectra for all 3 CNTs and in both charge states, both in DFT (left panels) and

in BSE (right panels). Again, using the E11 optical transition in each case as an energy

reference, Fig. 3.23 displays the E− redshifts for all CNTs considered. The highest red-

shift occurs for the (8,0) tube, which is about 1.0 eV, then decreasing to 0.4 eV for the

(10,0) tube and increasing again to 0.7 eV for the (11,0) tube. This result is in contrast

with Ref. [140], redshifts of 173 and 92 meV are expected for the (8,0) and (11,0) CNT-H

tubes, respectively. However, it is not expected that these scaling laws work well for

small-diameter tubes such as the (8,0). Moreover, the (10,0) and the (11,0) tubes belong

to different semiconductor CNT families, also making it harder to compare the results

between them. It is then fair to say that the proper diameter dependence of the redshift

cannot be extracted from the limited set of CNTs calculated in our work. Finally, Fig.

3.24 summarizes our calculated diameter dependence for the transition energies (both in

DFT and BSE), exciton binding energies and redshifts.

Finally, we discuss the intensity ratio between the first impurity-related peak (I−)

and the peak associated with the v1 → c1 (I11) transition. Fig 3.25 shows our results
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Figure 3.24: Results for (8,0), (10,0) and (11,0) CNTs. (a-d): Peak positions for E11

(black symbols) and E− (red symbols) excitons calculated with BSE (a and b) and at
DFT level (c and d). (e-f): Binding energies for E11 (black symbols) and E− excitons
(red symbols). (g-h) Redshifts (|E− − E11|) calculated using BSE (squares) and DFT
(circles) results. Left (right) panels are results for q = 1 (q = −1) and black empty circles
are results for the E11 peaks in pristine CNTs (see table 3.1).

for the intensity ratio in the case of a (10,0) CNT. Apparently, there is a non-monotonic

behavior, with a peak for a concentration of ≈ 4×10−3 of defects per carbon atom, which

corresponds to a mean distance between consecutive defects of about 2.5 nm. A similar

non-monotonic behavior in the I− intensity was also seen in Ref. [7] for CNT(6,5) bound to

4-nitrobenzenediazonium tetrafluoroborate. Other experimental data in the supplemental

material of Ref. [7] show similar optimal concentrations values for other tubes chirality

and defects bound to the CNT.

Experimentally, the ratio I−/I11 is influenced by the exciton population (including

decays from dark to bright excitons and vice versa) and electron-phonon interactions [174],

so a direct comparison between theory and experiment is not so simple in this case. Our
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ab initio results just take in account the dipole moment and eigenvalues of excitons as

shown in eq. (2.68). Our explanation for an optimal concentration value for which the

E− intensity is maximized, is that the impurity state has a localization length δ and

for low concentration of defects, defects do not interfere with each other. As the defect

concentration increases, more localized points of the CNT emit E− photons, then its peak

intensity increases. When the mean distance between defects l is close to the localization

size δ (the defect concentration increases), defect states start to interfere with each other

and the ratio I−/I11 decreases.

Figure 3.25: Ratio between the intensities of the first redshifted peak and the E11 peak
calculated using BSE. Red (blue) symbols are calculations for CNT(10,0) bonded to H
with net charge q = 1 (q = −1).

Finally, we analyze the effects of positional disorder on the optical spectra using the

TB method. The results are shown in Fig. 3.26, where we plot the optical absorption

for various H concentrations. Although these calculations obviously miss the excitonic

effects, several interesting effects are seen. First of all, for concentrations smaller than

1 defect/nm, impurity-related optical transitions are not so visible, but a small shoulder

appears to the higher-energy side of the main E11 transition. We attribute this shoulder
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to the symmetry-breaking induced by the defects, which lifts the double-degeneracy of

valence and conduction bands. For larger concentrations, a peak at nearly half the E11

energy appears. This peak is related to transitions to/from the defect state and increases

in intensity as the defect concentration increases. We also notice a gradual blueshift of E11

transitions, likely induced by quantum confinement effects of the valence and conduction

band edge states.

Figure 3.26: Absorption spectra calculated at TB level (except the black dashed line,
which was calculated at GW level without e-h interaction) for several defects concentra-
tions. In each curve, the linewidth is twice the standard deviation of the samples. The
sample size for each case is 20.
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3.5 Exciton Symmetries and Selection Rules

In the literature, the redshifted peak is often associated to dark excitons that become

bright due to the symmetry breaking caused by the defects [7]. In this section we inves-

tigate this possibility.

In Fig. 3.27 we plot the all eigenvalues of the BSE identifying which are bright or dark

excitons. For pristine CNT(10,0) the two degenerated valence and conduction bands give

rise to four excitons, one is bright, and the other three are dark excitons, as predicted

by group theory [3, 59] (see explanation in section 1.3). Those four states are located at

about 0.8 eV and other higher-energy dark excitons appear near 1.2 eV. For CNT(10,0)-H,

several degeneracies are broken and we observed a much richer set of dark and brighter

excitons (see Fig. 3.27), for all cases of charge doping and defect concentration.

The same trend is observed for CNT(11,0)-H and for CNT(8,0)-H, as shown in Fig.

3.28. In particular, for pristine CNT(8,0), we see an anomalous behavior associated to

small-diameter CNTs: The E11 exciton energy is 1.56eV and we observed dark excitons

with energy close to 1.2eV, as this bright exciton is composed by the first valence band

and the fourth conduction band, differently from large-diameter tubes such as the (10,0)

and (11,0) CNTs where the first exciton is composed by the first conduction and first

valence bands. For CNT(8,0)-H we also observe deeper transitions with energy 0.8 eV

smaller than the lowest dark exciton of CNT(8,0).

As one can see, several bright excitons can be seen with energy lower than E11. To

determine whether these excitons correspond to brightening of originally dark excitons

associated to v1 −→ c1 transitions, we analyzed the valence-conduction band compositions

of all low-energy exciton states in our calculations. Each exciton is composed of a linear

combination of several transitions. We say that an exciton is composed by a transition

vi → cj if this transition corresponds to 50% or more of the exciton composition. We

consider an exciton bright if its dipole moment intensity is 5% or more of the dipole
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Figure 3.27: Dark (black lines) and bright excitons (colored lines) for CNT bonded with
hydrogen atom for different number of unit cells included in calculations. Green lines are
the E11 excitons for each case and blue (red) lines are bright excitons for calculations with
q = −1 (q = 1). Calculations were done for pristine CNT and supercells with 4, 6, 8 and
10 unit cells (indicated in the figure).

moment intensity of the highest absorption peak.

We focus our analysis on the CNT(10,0)-H. Our results are shown in Fig. 3.29 (for

q = 1) and Fig. 3.30 (for q = −1). The four large panels in each figure correspond

to different defect concentrations (or supercell sizes). Each large panel is composed of

upper and lower smaller panels. The upper panels show the optical absorption and the

lower panel show the main component of the excitonic transitions. We focus specifically

on the v1 → c1 transitions (which include 1 → 1, 1′ → 1, 1 → 1′, and 1′ → 1′, all

related to the E11 exciton in pristine CNT(10,0)), and on the impurity-related v1′ → i

(i → c1′) transition, observed for calculations with charge q = 1 (q = −1), where the
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Figure 3.28: Dark (black lines) and bright excitons for CNT bonded with hydrogen atom
for different diameters. Green, red and blue lines are bright excitons for the cases of
pristine tube, CNT-H with q = 1 and CNT-H with q = −1, respectively.

impurity band is completely empty (full). Our results show unequivocally that not only

the lowest-energy redshifted E− peak but all the bright exciton peaks below E11 are

mainly composed of optical transitions involving the defect state. Therefore, they do not

correspond to brightening of previously dark exciton states. As a matter of fact, these

would be the v1′ → c1′ excitons, which have actually much smaller intensities than the

E11 peak and they generally have energies larger than E11 in all cases considered.

These results can be understood in more detail by performing a group-theory analysis

of exciton states. Pristine CNT(n, 0) belongs to the D2nh point group symmetry and

its valence (conduction) band belongs to the Eµ̃g (Eµ̃u) representations, which are two-
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Figure 3.29: Optical absorption at BSE level (upper panel) and exciton composition (lower
panel) for different number of unit cells for CNT(10,0)-H with q = 1. In the lower panels
the bright (dark) excitons are colored (dark) vertical lines. Bright excitons are associated
to absorption peaks by vertical dashed lines. In the upper panel black dashed line is the
optical absorption of pristine CNT(10,0).

dimensional and the envelope function Fν(r) belongs to A1g (A2u) for ν = even number

(ν = odd number), as explained in section 1.3.3. Evaluating the direct product with the

valence band, the conduction band and envelope function representations, we get

Eµ̃g ⊗ Eµ̃u ⊗ A1g = A1u + A2u + Eµ̃′u(ν = even)

Eµ̃g ⊗ Eµ̃u ⊗ A2u = A2g + A1g + Eµ̃′g(ν = odd)
(3.4)

which means that for CNT(10,0) the Eµ̃′g and Eµ̃′u bands give rise to four excitons: two

non degenerate and two degenerate. Bright excitons (A2u) appear for ν = even and the

other cases are dark excitons.
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Figure 3.30: Optical absorption at BSE level (upper panel) and exciton composition (lower
panel) for different number of unit cells for CNT(10,0)-H with q=-1. In the lower panels
the bright (dark) excitons are colored (dark) vertical lines. Bright excitons are associated
to absorption peaks by vertical dashed lines. In the upper panel black dashed line is the
optical absorption of pristine CNT(10,0).

The introduction of the hydrogen atom breaks the CNT symmetry, changing the point

group from D2nh to Cs, in which the symmetries are the identity and horizontal plane

reflection (a plane that contains the nanotube axis and the hydrogen atom) operations.

To analyze the effect of the symmetry breaking, the compatibility relations in table 3.3

are necessary.

By using the compatibility relations, the direct product from eq. 3.4 becomes

(A′ + A′′)⊗ (A′ + A′′)⊗ A′ = 2A′ + 2A′′(ν = even or odd) (3.5)
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D2nh Cs
Eµ̃u A′ + A′′

Eµ̃g A′ + A′′

A1g, B2g, A2u, B1u A′

A2g, B1g, A1u, B2u A′′

Table 3.3: Compatibility relations

where the representation of the envelope function Fν is A′ for both ν even or odd.

The A′ (A′′) excitons are bright (dark) excitons, where the A′ exciton comes from the

direct product between equal representations (A′ ⊗ A′ and A′′ ⊗ A′′) and the A′′ exciton

comes from different representations (A′ ⊗ A′′). This group theory analysis agrees with

our ab initio results: the A′ excitons corresponds to v1 → c1 (bright, high intensity) and

v1′ → c1′ (bright, low intensity) transitions and A′′ excitons corresponds to v1′ → c1 and

v1 → c1′ dark excitons.

By looking at the electronic density of those wavevectors (ρ = |ψ|2), we observed that

for v1, v1′ , c1 and c1′ (see Fig. ??) the electronic density has 6 nodes in the angular

direction. For v1 and c1 (v1′ and c1′) bands there is a maximum (node) at θ = 0. In other

words, v1 and c1 states transform like A′ (even under the horizontal reflexion), whereas

v1′ and c1′ transform like A′′ (odd under reflexion). So, we concluded that v1 and c1 (v1′

and c1′) wavefunctions are in phase and v1 and c1′ (v1′ and c1) wavefunctions are out of

phase, with respect the oscillations around the CNT circumference. The dipole moment

parallel to the tube axis is proportional to 〈ψc|vz|ψv〉 and if we write the eigenfunctions

as |ψc(v)〉 = Zc(v)(z)Θc(v)(θ), the dipole moment is given by

〈ψc|vz|ψv〉 =

∫
dzZ∗c vzZv

∫
dθΘ∗cΘv (3.6)

then if Θc and Θv are out of phase the integral in θ will be zero and the corresponding

exciton is dark.

Now, by looking at the impurity state, our ab initio results show that the impurity

state is also even under reflexion (A′ symmetry) and therefore it couples with the v1 (c1)
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band for q = 1 (q = −1) and does not couple with v1′ or c1′ .

Another consequence of the symmetry breaking of is that the quasi-angular momentum

µ̃ do not have influence on selection rules anymore. As µ̃ is not a good quantum number

anymore, new excitons may arise for transitions between bands of different µ̃ indices.

For light polarization perpendicular to the tube axis, excitons are composed by bands

where δµ = µ − µ′ = ±1 [3, 59] in pristine CNTs. The introduction of the H defect also

changes selection rules following the above explanation, although our BSE results for light

polarization perpendicular to the tube axis show peaks with much smaller intensities.

Figure 3.31: Absolute value of dipole transition matrix elements for different transitions
evaluated at DFT level for negatively charged (q = −1) CNT(10,0)-H for several tube
lengths. Black (continuous) dashed lines are optical absorptions evaluated at DFT level
for CNT(10,0)-H (pristine CNT(10,0)).From the top to the bottom the unit cell length
is: 1.7nm, 2.5nm, 3.4nm and 4.2nm.

Symmetry aspects and selection rules can also be used to analyse the optical spectra

at the DFT level. We now focus on the CNT(10,0)-H system. Fig. 3.31 show the optical
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spectra at the DFT level with q = −1 (where the impurity band is totally filled), for

several defect concentrations. Notice that we observe the same symmetry combinations

that compose bright excitons at BSE level calculations with q = −1 (Fig. 3.30). Similar

trends are observed for DFT with q = 1 (not shown). At DFT level the transition v1 → c1

(in blue) has energy equal to the CNT bandgap and the transitions i→ c1′ (in green) are

redshifted with respect to the v1 → c1 transition. The transition v1′ → c1′ is blueshifted

with respect to the v1 → c1, similar to what happens in the BSE case. As the number of

unit cells increase, the v1′ → c1′ peak gets closer to the v1 → c1 peak as the splits ∆v and

∆v are proportional to N−1
cells.

Figure 3.32: Absolute value of dipole transition matrix elements for different transitions
evaluated at DFT level for CNT(10,0)-H with unit cell length 4.2 nm with q = 0,±1 (in-
dicated in each panel).. Black (continuous) dashed lines are optical absorptions evaluated
at DFT level for CNT(10,0)-H (pristine CNT(10,0))

In Fig. 3.32 we show the same analysis for various charge states, using our largest
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supercell size (4.2 nm). For q = −1 (q = 1) the redshifted peaks are transitions i → c1′

(v1′ → i) and in the specific case of q = 0 we see both transitions as the impurity band is

half filled 5.

Those transitions are easily explained if one applies group theory neglecting excitonic

effects. In this case, the direct product to be considered involves just the valence and

conduction bands (does not include the envelope function) [3,59]. The results are the same

as in eq. 3.5 as the envelope function belongs to the totally symmetric representation.

This may be a very useful approach when studying systems that are very computationally

demanding for GW/BSE calculations but possible to study at DFT, TB or other electronic

structure methods.

We now go back to the symmetry analysis of the excitonic states and consider the

(8,0) and (11,0) CNTs. For CNT(8,0) the analysis is more complicated, as this is a

relatively small-diameter CNT and some of its features do not follow the same trends of

larger diameter tubes. For the pristine tube (left panel of Fig. 3.33), the first and second

valence bands are double degenerated, the first conduction band is non degenerate and

the second, third and fourth conduction bands are each one double degenerate. The E11

transition couples the v1 and v1′ with c4 and c4′ bands and the E22 absorption peak, which

is blueshifted about 100meV with respect to E11, couples the v2 and v2′ with c3 and c3′

bands. This band inversions with respect to larger diameter CNTs results primarily from

trigonal warping effects in the graphene band structure.

For CNT(8,0)-H with q = +1 (middle panel of Fig. 3.33), first we observe many peaks

with the transition from v1′ to the impurity state i in a non-Rydberg series. We also

observe less intense peaks, including transitions from v2′ to i. We still observe the E11

peak, now composed just by the v1 and c4 bands and the E22 peak, now composed by

v2 and c3 bands. Other transitions that were not present in pristine CNT(8,0) are now

5It is important to note that we can only study the q = 0 case at DFT level because Many Pertubation
Methods are not easily applicable to open shell systems [175]
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present in CNT(8,0)-H, such as v2′ to c1, v1′ to c2, v1′ to c1 and v1 to c2′ .

Figure 3.33: Optical absorption at BSE level (upper panel) and exciton composition
(lower panel) for pristine CNT(8,0) (left) and CNT(8,0)-H with q = 1 (middle) and
q = −1(right), where the concentration of defects is 0.6 defect/nm. In the lower panels
the bright (dark) excitons are colored (dark) vertical lines. Bright excitons are associated
to absorption peaks by vertical dashed lines. In the upper panels (b) e (c) green dashed
line is the optical absorption of pristine CNT(8,0).

Finally, the results for CNT(8,0)-H with q = −1 are shown in the right panel of Fig.

3.33. The first two peaks involve the transition i to c1, with the first peak being less

intense than the second one. The transition from i to c2′ is also present. The E11 and E22

peaks are present as in case of CNT(8,0)-H q = 1. Other transitions that are not present

in the pristine CNT(8,0) are now present for the defective case and they are summarized

in Table 3.4.

We now address the CNT(11,0). As other larger-diameter tubes, the first and second

valence (conduction) bands are double degenerate and the third conduction band is non-

degenerate. Therefore, the E11 (E22) exciton couples v1 and v1′ (v2 and v2′) with c1 and c1′

(c2 and c2′) in the pristine case, as shown in the left panel of Fig. 3.34 . For CNT(11,0)-H

with q = ±1 (middle panel) the E11 (E22) peak is composed of the v1 and c1 (v2 and c2)
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CNT(8,0) CNT(8,0)-H (q = +1) CNT(8,0)-H (q = −1)

(v1, v1′ , c4, c4′) (E11) (v1, c4) (E11) (v1, c4) (E11)
(v2, v2′ , c3, c3′) (E22) (v2, c3) (E22) (v2, c3) (E22)

(v1′ , i) (E−) (i, c1) (E−)
(v2′ , i) (i, c2′)
(v1′ , c1) (v1′ , c1)
(v1′ , c2) (v2′ , c2′)
(v2′ , c1) (v2′ , c1)
(v1, c2′) (v1, c2)

Table 3.4: Bright exciton compositions for CNT(8,0) and CNT(8,0)-H (q = ±1)

Figure 3.34: Optical absorption at BSE level (upper panel) and exciton composition
(lower panel) for pristine CNT(11,0) (left) and CNT(11,0)-H with q = 1 (middle) and
q = −1(right), where the concentration of defects is 0.6 defect/nm. In the lower panels
the bright (dark) excitons are colored (dark) vertical lines. Bright excitons are associated
to absorption peaks by vertical dashed lines. In the upper panels (b) e (c) green dashed
line is the optical absorption of pristine CNT(11,0).

bands. For q = 1 (q = −1, left panel) the E− peak is the transition from v1′ to i (i to

c1′). Other transitions are listed in Table 3.5.

In summary, the presence of the defect breaks the zigzag CNT symmetry from D2nh

to Cs and µ̃ is not a good quantum number anymore. Double degenerate bands become

two non-degenerate bands that we call ca and ca′ (va and va′) and E− peaks are related
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CNT(11,0) CNT(11,0)-H (q = +1) CNT(11,0)-H (q = −1)

(v1, v1′ , c1, c1′) (E11) (v1, c1′) (E11) (v1, c1) (E11)
(v2, v2′ , c2, c2′) (E22) (v2, c2) (E22) (v2, c2) (E22)

(v1′ , i) (E−) (i, c1′) (E−)
(v2′ , i) (i, c3)

(v1′ , c1′) (v1′ , c1′)
(v1′ , c2′) (v1′ , c2′)
(v1′ , c3) (v1′ , c3)
(v2′ , c1′) (v2′ , c1′)

(v2′ , c2′)
Table 3.5: Bright exciton compositions for CNT(11,0) and CNT(11,0)-H (q=±1)

to the coupling between the impurity state i and ca′ (va′) states. In the Cs point group

there is only two possible representations, A′ and A′′, and equal representations couple

with each other. The previous 1 bright and 3 dark excitons become 2 dark (coupling ca

with va′ and ca′ with va) and 2 bright excitons (coupling ca with va and ca′ with va′). The

impurity gives rise to new bright (coupling the impurity band with va′ and ca′) and dark

(coupling the impurity band with va and ca) excitons, and to those cases we attribute the

redshifted peaks observed experimentally.

Another variable to be explored is the spatial arrangement of defects on the tube

surface. For example, in the ref. [133], CNT(8,0) bonded to two hydrogen atoms was

studied and in this case the impurity states did not lie in the middle of the band gap,

but resonant within the conduction and valence bands. The second hydrogen atom was

bonded in the ortho position (see Fig. 3.35) and the line connecting the carbon atoms

bonded to those hydrogen atoms is parallel to the tube axis, so the point group in this

case is C2v (the same of water molecule), which has four representations: A1, A2, B1 and

B2. For this symmetry the representations Eµ̃g and Eµ̃u both reduce to B1 + B2 if µ̃ is

odd or A1 + A2 if µ̃ is even and the envelope function goes to A1 independently of µ̃.

Bright excitons just appear in the couplings of bands of same representation (A1 with

A1, A2 with A2 and so on), then in this case there are less possible transitions. If the

second hydrogen is in a meta positions and, the line connecting the carbon atoms bonded
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to those hydrogen atoms is not parallel to the tube axis then the point group is Cs, with

lower symmetry than C2v. In table 3.6 we show the possible point groups for different

possible geometries for CNT-2H.

Figure 3.35: Example of possible sites where a second hydrogen atom can be bound. Blue,
red and green positions corresponds to orto, meta and para positions respectively. The
blue atom on the right and green atom on the left correspond to the C2v point group
symmetry and other configurations correspond to Cs point group.

Other defect distributions have different symmetries. Ordered patterns of hydro-

genated CNTs are energetically favorable [49,178] (instead of random distributions) which

leads to more symmetric configurations.

Geometry Point Group

ortho ‖ z C2v

ortho not ‖ z Cs
meta Cs

para ‖ z C2v

para not ‖ z Cs
Table 3.6: Point groups for different geometries of zigzag CNTs bonded to two hydrogen
atoms. Configurations can be seen in Fig. 3.35.

3.6 Binding Energy

In this section we analyze the binding energies of the E11 and E− excitons for NTC(10,0)-

H with different defect concentrations. The binding energy of an exciton is given by

Eb = Egap − Ex where Ex is the exciton energy and Egap is the QP gap between the
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bands that generate this exciton. In our calculations the lowest E11 and E− excitons are

composed by 95 % or more by two bands.

Figure 3.36: Binding energy of different types of excitons in CNT(10,0)-H by varying the
number of unit cells in calculations and for q = 1 in red (left panels) and for q = −1
in blue (right panels). Upper panels are the E11 excitons (v1 → c1 transition) and lower
panels are the E− excitons (v1′ → i transition for q = 1 and i→ c1′ transition for q = −1).
The case for infinity number of unit cells corresponds to pristine CNT(10,0) and black
dashed lines is the binding energy for pure CNT(10,0) E11 exciton.

We focus on bound excitons, as shown in Fig. 3.36. We observe that the series of

binding energies depends on the defect concentration. In general, for higher concentrations

we observed higher binding energies, specially for q = −1 cases. The binding energies for

E11 and E− excitons are similar and for higher concentrations more transitions involving

the impurity band appear. For the E11 exciton we also show the binding energies for the
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pure CNT. The lowest E11 exciton is less bound in CNT-H than in the pure CNT case

for most defect concentrations, except for four unit cells with charge q = −1.

From the effective mass theory (assuming homogeneous screening) those excitons

should follow a Rydberg series and the corresponding energies should be [179]

En =
E0(

n+ D−3
2

)2 (3.7)

where D = 1, 2 or 3 for 1D, 2D and 3D systems respectively. For 1D systems there is

a divergence in the equation (3.7) when n = 1. So, we propose to fit our data with the

following equation

En =
A

(n+B)2
(3.8)

where B plays the role of the dimensional parameter.

Comparing the equations 3.7 and 3.8, we should get B = (1 − 3)/2 = −1 for 1D

systems. In our fits we still observe a behavior ∝ n−2 and B assumes values 0 to 5 (3

to 10) for the E− (E11) exciton, as the ground state has a finite binding energy. For low

dimensional systems non-Rydberg series are observed [6] as the dielectric screening is not

local [68, 180]. In Fig. 3.37 we show that our calculated data show binding energies less

intense than what is expected by fits using eq. 3.7. The main reason for that is the non

local screening in low dimensional systems [6, 68].
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Figure 3.37: Binding energy of excitons E11 (upper panels) and E− (lower panels) for
CNT(10,0)-H with q = 1 (left panels) and q = −1 (right panels). Solid lines are fits using
equation 3.8 and dashed lines are fits using equation 3.7 with D = 1. Red, blue, green
and pink symbols correspond to the cases with 4, 6, 8 and 10 unit cells in the supercell
respectively.
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Chapter 4

Conclusions

In this work, we analyzed the effect of hydrogen doping in semiconducting zigzag

CNTs using ab initio and TB calculations. In the electronic structure calculations, we

observed the splittings of degenerate bands and the emergence of a flat impurity band in

the middle of the bandgap. The band splittings depend on the impurity concentration

and electronic doping in CNTs. The wavefunction associated to this impurity band is

localized around the defect site. In our TB calculations for different concentrations of

random arrangements of hydrogen atoms on the tube surface, we see a distribution of

defect states.

In the optical absorption spectra we see new redshifted peaks in agreement with previ-

ous theoretical and experimental works. Experimentally, the position of these redshifted

peaks highly depend on the withdrawing capability of the covalent defect, the confor-

mational arrangement and concentration of defects. We analyze both the diameter de-

pendence and the defect concentration dependence of the redshift. We also analyzed the

different excitons composition, binding energy and lifetimes.

We find out a high variety of bright and dark excitons: some are also present in pristine

CNT and some are involve transitions to or from the impurity state. It is important to

note that, like in pristine CNTs, the lowest energy state is dark, and the difference between

the E11 state and the lowest dark state in our results for CNT-H is as large as 600meV,
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differently in pristine CNTs where this difference is about 50 meV.

We find that the redshifted peaks are associated to excitons involving the impurity

band, and they do not result from brightening of previously dark transitions. We do

observe this brightening effect, but it leads to excitons with energies larger than E11 and

low intensity. As the impurity state is itself localized, the respective exciton must be

localized as well, which agrees with experimental works that correlate the E− emission

with specific regions of functionalized CNTs.

By using Group Theory we concluded that the hydrogen breaks the zigzag CNT sym-

metry from C2nv to the Cs point group (for low concentration of defects) and the impurity

band couples to c1′ (v1′) when the impurity band is totally full (empty). Interestingly, the

same trends are observed in calculations at DFT level.

The exciton binding energies do not follow Rydberg series but still show an approxi-

mate n−2 (the index of each bright exciton) behavior and binding energies for E11 excitons

are close to binding energies of E− excitons.
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Appendix A

Empty Cylinder Model

In this appendix, we provide some analytical expressions using approximations for the

eigenvalues and eigenvectors in CNTs.

A.1 Pristine CNT

The pristine CNT wave functions can be approximated by

ψµ,k = Aei(kzz+µθ)fµ,k(z, θ) (A.1)

where

f(z, θ) = f(z + L, θ) = f(z, θ + 2π) (A.2)

is a periodic function. In our calculations for zigzag CNTs, L ≈ 4.2Å.

Based on that, we approximate those solutions to plane waves ei(kz+µθ), which are

solutions to the empty cylinder shell hamiltonian

H = −~2∇2

2m∗
= − ~2

2m∗

(
1

R2

∂2

∂θ2
+

∂2

∂z2

)
(A.3)

where R is the cylinder radius and m∗ is the electron (hole) effective mass. The eigenvalues

to this hamiltonian are
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Ek,µ =
~2

2m∗

(
k2 +

µ2

R2

)
(A.4)

We are interested in working with the two (valence) conduction degenerate bands

involved in the E11 exciton, which have angular momentum µ and −µ. As in this analysis

µ is constant we modify our hamiltonian to

He(h) =
~2k2

2m∗e(h)

+ (−)
Eg
2

(A.5)

where the e(h) index and the +(−) sign hold for a electron (hole) in the conduction

(valence) band. In this model the bandgap at k = 0 is Eg. The bandgap and effective

masses are obtained from our ab initio results.

We define the wavefunctions as

ψ
e(h)
k,µ =

1√
2πRL

ei(±kz+µθ) (A.6)

where the +(−) in the exponential garantees that 〈ψe|ψh〉 = 0, except at k = 0.

The E11 exciton wave function is approximately given by

Ψ(ze − zh) =
∑
k

A(k)ψc(ze)ψv(zh) (A.7)

From our ab initio results, we can write A(k) = A0e
−(k/∆k)2

. Using eq. A.6 and

supposing ∆k is much smaller than the boundaries of the Brillouin zone (k = π/L) the

exciton wavefunction in the real space is given by

Ψ(ze − zh) ≈
∫ ∞
−∞

dkA(k)ψc(ze)ψv(zh) =
Ã0∆k

LR
eiµ(θe+θh)e−( ze−zh2/∆k )

2

(A.8)

so the exciton size is given by δ0 = 2/∆k. It is important to note that this wavefunction

intensity depends on the relative coordinate ze − zh and does not depend on the exciton

center of mass coordinate ZCM = (meze +mhzh)/(me +mh).
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A.2 CNT-H

Now we add an impurity to the CNT. In our calculations two important features were ob-

served: the split of degenerate bands and an impurity state in the middle of the bandgap.

We can easily understand the split of the degenerate pristine CNT bands by treating

the impurity effect as a local perturbing potential

H ′ = −V0δ(z − z0)δ(θ − θ0) (A.9)

Now we write the pristine wavefunctions as in eq. A.1. We can recover the plane wave

by setting f(z, θ) = 1. The normalization factor is given by

∫
Rdθdzψµ,kψ

∗
µ,k = 1→ |A|2

∫
Rdθdz|f(z, θ)|2 = 1 (A.10)

|A|2 =
1

R
∫ L

0
dz
∫ 2π

0
dθ|f(z, θ)|2

(A.11)

When working with supercells with size NcellsL, containing Ncells unit cells, the nor-

malization factor is given by

|A|2 =
1

R
∫ NcellsL

0
dz
∫ 2π

0
dθ|f(z, θ)|2

(A.12)

As the periodic function f has a period L in the z direction we can state that

R

∫ NcellsL

0

dz

∫ 2π

0

dθ|f(z, θ)|2 = Ncells

(
R

∫ L

0

dz

∫ 2π

0

dθ|f(z, θ)|2
)

(A.13)

and, finally

|A|2 =
1

NcellsI
(A.14)

where I = R
∫ L

0
dz
∫ 2π

0
dθ|f(z, θ)|2.

The unperturbed states of pristine CNT obey
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H(0)ψ
(0)
±µ,k = E

(0)
µ,kψ

(0)
±µ,k (A.15)

where the states ψµ,k and ψ−µ,k are degenerate.

By applying first order degenerate perturbation theory, we have to solve the following

determinant

(
Wµµ Wµ−µ
W−µµ W−µ−µ

)
(A.16)

where

Wµµ = W−µ−µ = 〈ψµ,k|H ′ |ψµ,k〉 = −V0|f(z0, θ0)|2|A|2 (A.17)

Wµ−µ = W ∗
−µµ = 〈ψµ,k|H ′ |ψ−µ,k〉 = −V0e

2iµθ0|f(z0, θ0)|2|A|2 (A.18)

The first order corrections are given by

E± =
1

2

[
Wµµ +W−µ−µ ±

√
(Wµµ −W−µ−µ)2 + 4|Wµ−µ|2

]
(A.19)

for which the solutions are

E+ =− 2V0|A|2|f(z0, θ0)|2

E− =0
(A.20)

Which means that one state has an energy change equal to E+ and the other remains

in the same, which agrees with our ab initio results (see Fig. 3.4).

The split is then given by

∆E = |E+ − E−| = 2V0|A|2|f(z0, θ0)|2 =
2V0|f(z0, θ0)|2

NcellsI
(A.21)

The important feature to observe here is that this split is proportional to N−1
cells. In our

DFT and GW calculations, by changing the supercell size, we observed splits ∝ Ncells
−1
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converging to 0 when supercell size goes to infinity. The impurity band goes to a constant

value and the bandgap does not change substantially. Those trends are summarized in

Fig. 3.6.

Another important observation is that the splits in the above equation are proportional

to the electronic density |f(z0, θ0)|2 in the (z0, θ0) point. In Fig. 3.10 we observed that

the bands for which the wavefunctions have maximum density (nodes) for θ = 0 had (did

not have) energy variations.

We now introduce the impurity wave function, following an effective mass approach,

as

ψi(z − zi) = F (z − zi)ψc(v)(z − zi) (A.22)

where we use ψc(v) if we are dealing with a donor (acceptor) impurity and its eigenvalue is

Ei, and it is located between the last valence band and the first conduction band. Based

on our ab initio results we choose F (z − zi) = (1/
√
πσz)e

−(z−zi)2/σ2
z

Based on our results for CNT(10,0)-H (see section 3.5) we may write the exciton

composed by the impurity state as

Ψ(ze − zh) =
∑
k

A(k)ψi(ze(h) − zi)ψv(c)(zh(e)) (A.23)

which is equal to

Ψ(ze − zh) = F (ze(h) − zi)
∑
k

A(k)ψc(v)(ze(h) − zi)ψv(c)(zh(e)) (A.24)

After some algebra, we obtain:

Ψ(ze − zh) =
Ã0∆k

LRσz
e
−
(
ze(h)−z

2
i

σ2
z

)
e2iµθe−( ze−zh2/∆k )

2

(A.25)

and the probability density is given by

ρex(ze − zh) ∝ e
−
(
ze(h)−zi
σz/
√

2

)2

e−( ze−zh1/∆k )
2

(A.26)
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Notice that the excitonic wavefunction in this case displays an interplay between the

dynamics of the electron-hole pair and the localization induced by the impurity.
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