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The Bethe-Salpeter equation (BSE) is the workhorse method to study excitons in materials. The BSE
Hamiltonian size, which depends on how many valence-to-conduction band transitions are considered, needs
to be chosen to be sufficiently large to converge excitons’ energies and wavefunctions, but small enough to make
calculations tractable, as BSE calculations are expensive and scale with the number of atoms as O(NS, ). In
particular, in the case of supercell (SC) calculations composed of Ny, replicas of a primitive cell (PC), a natural
choice to build this BSE Hamiltonian is to include all transitions derived from PC calculations by zone folding.
However, this leads to a very large BSE Hamiltonian, as the number of matrix elements in it is (NyN.N,)?,
where N, is the number of k-points and N, is the number of conduction (valence) states used. When creating
a SC, the number of k-points decreases by a factor N, but both the number of conduction and valence states
increase by the same factor, therefore the number of matrix elements in the BSE Hamiltonian increases by a
factor erep, making exactly corresponding calculations prohibitive. Here, we provide a workflow to decide how
many transitions are necessary to achieve comparable results, based on only PC results. With our method, we
show that to converge the first exciton binding energy of a LiF SC composed of 64 PCs, to an energy tolerance
of 0.15 eV, we only need 12% of the valence-to-conduction matrix elements that result from zone folding with
a minimal set of bands. As an example, we use the number of bands from our method to obtain the absorption
spectrum of LiF with a V-like defect. The procedure in our work helps evaluate excitonic properties in large SC
calculations, such as moiré patterns, charge density waves, defects, self-trapped excitons, polarons, interfaces,

and other kinds of disorder, and can be used within any code that builds the BSE Hamiltonian.

DOL: 10.1103/dg13-y4kj

I. INTRODUCTION

Ab initio calculations of crystals are widely used in the
materials science community. Most of those techniques use
crystal periodicity and Bloch’s theorem to understand the
electronic properties of materials. However, there are many
cases of interest where the translational symmetry is broken,
such as moiré patterns of 2D materials [1,2], charge density
waves [3], defects [4], alloys [5], amorphous materials [6-8],
self-trapped excitons [9,10], frozen phonon calculations [11],
polarons [12], surfaces [6,13], thermal disorder [14], and
cases of structural and magnetic symmetry breaking [15,16].
In this kind of situation, it is common to use a supercell (SC)
approximation [17] where the SC size must be large enough
to converge the desired properties [18,19], such as electronic
energy levels or phonon frequencies. The SC consists of Nep
replicas of one primitive cell (PC), and the maximum size
that can be used is limited in practice by the available com-
putational resources. Schemes to reduce the computational
expense are often necessary. In particular, if the atoms are
only slightly moved from their original positions because of
a symmetry breaking, such as local strains and defects, then
SC properties are still similar to PC properties, which can be
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used to construct an approximation for Bethe-Salpeter equa-
tion (BSE) calculations.

DFT studies using the SC approximation are already com-
mon [17], but GW and BSE calculations are less common
because of their high computational cost [4,20-23]. The
GW method [24] is known to have good performance in
reproducing the experimental band gaps of semiconductors,
while BSE [25-29] is successful in studying excitonic effects.
GW/BSE calculations are performed on top of DFT results
and are, in general, more computationally demanding than
DFT calculations, and their convergence is harder to achieve.
Typical plane-wave DFT calculations scale with O(NJ o)
[30], while GW/BSE calculations scale up to O(Nns) —
(’)(thoms) [31], where Nyoms is the total number of atoms.
There have been advances in parallel efficiency [4] and var-
ious approximations and numerical schemes that can be used
to handle bigger SCs. To compute the screened Coulomb
interaction (the W in the GW approximation), one can make
use of analytical models for the dielectric function [32,33].
The stochastic pseudobands method speeds up GW calcula-
tions from O(N*) to O(N?) [34]. Scissor operators are also
a valid option in the case where the GW corrections fol-
low approximately a linear relation with DFT energy levels
[31,35]. Subsampling schemes deal with G-vectors perpen-
dicular to the layers of 2D systems, which greatly reduces the
density of k-point sampling in the first Brillouin zone (BZ)
[36] for both GW and BSE calculations. One can also expand
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wavefunctions of SC on the basis of wavefunctions of PC,
and then calculate SC kernel matrix elements in terms of PC
kernel matrix elements [1,2,37]. Dai et al. have developed a
variational method that combines finite-momentum excitons
and phonons to study polaronic excitons without the necessity
of SCs [38,39]. Tight-binding [40-43] and machine learning
[44,45] approaches to GW/BSE also provide a significant
speed-up but need to be parametrized very accurately. Despite
this work, new theories and approaches are still necessary to
improve the performance of GW/BSE calculations in larger
SCs.

In this paper, we focus on the BSE calculations, more
specifically on the kernel matrix element calculations, which
take into account the electron-hole interaction and are typ-
ically the most computationally demanding step of our SC
GW/BSE calculations [31]. The kernel calculation scales as
O(N3,.s) and the absorption step, in which the BSE Hamilto-
nian matrix is diagonalized, scales as O(NS,,..,), but typically
the prefactor makes this step considerably less expensive [31].
The main convergence issue in this kind of calculation is the
number of conduction and valence bands to include in the BSE
Hamiltonian. The number of bands can be very large, leading
to a large number of node-hours and amount of RAM needed
to perform the calculations, as well as a large amount of disk
space needed to store wavefunctions and GW/BSE results,
making BSE calculations on SCs computationally very chal-
lenging. We provide an efficient way of choosing the number
of valence and conduction bands for SC calculations based on
the results of PC calculations. Within our scheme, we built
a BSE Hamiltonian with only 12% of the number of matrix
elements that would result from zone folding of a minimal
set of PC conduction and valence states. We achieved kernel
calculations 8.4 times faster with errors of only 150 meV
for the binding energies of the first exciton in SC calcula-
tions compared to PC results for rocksalt LiF. Herein we use
the BerkeleyGW code [31], but this method can be easily
extended to other codes that build and diagonalize the BSE
Hamiltonian [46—49].

We chose to study LiF as it is an insulator with strong exci-
tonic effects that are well studied theoretically [25]. Because
of the strong electron-phonon interaction, polaronic effects
are strong as well [50,51], and it presents self-trapped excitons
with polaronic character [10,38,39] and color centers [52-54].
Therefore LiF is an excellent choice for testing new method-
ologies for BSE supercell calculations, although our method
does not make any assumptions about the material, so it can
be applied to any material where excitonic effects are present,
such as 2D materials [1,2,40,55,56], carbon nanotubes [57],
etc.

In this work we use the term “exciton” for all eigenvectors
of the BSE Hamiltonian, regardless if their energies are below
or above the band gap, as often done in the literature on BSE
[31]. Usually one reserves the term “exciton” for transitions
below the band gap, as experimentally excitons’ signatures
are sharp peaks below the continuum in optical absorption
experiments, which indicates they are bound excitons, and
their binding energy is defined as the difference between the
excitation energy and the band gap. From a more analytical
point of view, the binding energy may be defined by the
action of the kernel operator [25] (Ej, = (A|K"|A)), and even

transitions with energy above the band gap can be classified as
“bound” excitons if they are composed of higher-energy tran-
sitions. For example, recently, an experimental paper studied
dark excitons in Crl3 with energies above the band gap [58].

The paper is organized in the following way: in Sec. II
we discuss the zone-folding aspects to be considered in BSE
calculations and our approach, in Sec. III we provide com-
putational details of our calculations, in Sec. IV we show
our approach applied to LiF SC calculations, in Sec. V we
calculate the absorption spectra of LiF with a defect similar to
a Vi center, and in Sec. VI we present our conclusions.

II. THEORY

A. Consideration about k folding

Since the concepts of k-point sampling and total number of
G-vectors are common for both DFT and GW/BSE calcula-
tions, we start by discussing them in the case of DFT. Let us
consider a crystal with lattice vectors ay, a3, and a3 and recip-
rocal lattice vectors by, by, and b3, which obey a; - b; = 27 §;;
[59]. If a SC has lattice vectors Nja;, N>a,, and Nzaz, with
N; > 1 being a natural number, then the primitive reciprocal
lattice vectors are given by by /Ny, by/N;, b3/N;3. Therefore,
the SC volume increases by a factor Nrep = N NoN3, while the
first BZ reciprocal volume decreases by this same factor. In
the limit of very large SC, just the I'-point is sampled [4].
The results of a SC calculation will be identical to results
of a PC calculation when the number NS¢ of k-points in a
regular grid in the direction i for the SC relates to the number
N,E (Ij of k-points in a regular grid in the direction i of a PC as

NG§ = NE € /Nyep.i. For example, a PC calculation of a crystal
with 8 x 8 x 8 k-grid corresponds to a 4 x 2 x 1 k-grid in a
2 x 4 x 8 SC. Given that NJ¢ and NPC are integers, this con-
dition cannot always be met, espe01ally if one considers more
general SCs in which the lattice vectors are not multiples but
linear combinations of the PC ones, e.g., for the conventional
and primitive cells of diamond-structure silicon. In such cases,
one can make SC results comparable to PC results by making
the density of k-points in both BZs similar.

Plane-wave-based DFT codes expand periodic quantities
as f(r)= ZG fGeiG" [59]. Those expansions are done for
G-vectors that obey h2|G + k|2 /2m, < Ecpeote, Where Ecyeoft
is the cutoff energy. As the G-vectors are linear combina-
tions of the primitive reciprocal lattice vectors, the density of
G-vectors in reciprocal space increases by a factor Npp, so
SC calculations will have more G-vectors for a fixed Ecyoft.
Plane-wave DFT codes iteratively diagonalize N Kohn-
Sham (KS) Hamiltonians, with a time that scales each as
O(NE log Ng). When dealing with a SC, the number of KS
Hamiltonians decreases by a factor N, and each diagonaliza-
tion will be NNép times more expensive, so the whole SC
calculation will be ~N} x Nz, = Ny times more expen-
sive. This increase can also be thought of as coming from the
fact that the PC Hamiltonian is block-diagonal in k-point but
the SC Hamiltonian loses this structure when the k-points are
folded together. However, we will see that the effect is more
dramatic in BSE.

DFT calculations are known to underestimate the band
gap of semiconductors and insulators. One solution to this
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TABLE I. Timing of LiF GW/BSE calculations on Frontera at the Texas Advanced Computing Center [62] using CPUs for LiF PC and SC
(4 x 4 x 4). Each CPU node is an Intel 8280 “Cascade Lake” with 56 cores. Each row corresponds to a different step of the GW /BSE workflow
in the BerkeleyGW code labeled by the name of the executable [31]. Parabands is the executable used to generate empty states to be used in
GW calculations, Epsilon calculates the dielectric matrix, Sigma calculates GW corrections, Kernel calculates electron-hole interactions, and
Absorption uses data from previous steps to interpolate, build, and diagonalize the BSE Hamiltonian, obtaining the absorption spectra. More
computational details can be found in Sec. III. The most demanding step for SC is the kernel calculation. GW /BSE calculations were performed
with BerkeleyGW version 4.0, compiled with Intel compilers and OpenMPI. The lowest section corresponds to “naive” choices of the number
of bands based only on zone folding from N, =5, N, = 10 and N, = 3, N, = 1 bands of PC calculations. These timings are extrapolated from
the SC calculations, proportional to (N.N,N;)?. For GW calculations, fp,yq, is the number of calculated bands.

Calculation step Time (s) Nodes Node-hours Notes
PC (n, = 64)
Parabands 11.3 1 0.003 157 states generated
Epsilon 38.8 1 0.011
Sigma 676.7 1 0.188 Npands = 22
Kernel 15.0 1 0.004 N, =5,N.=10
Absorption 36.8 1 0.010 N, =5,N.=10
SC(m = 1)
Parabands 230.7 60 3.8 174338 states generated
Epsilon 24.6 10 0.07
Sigma 871.4 10 2.4 Noands = 256
Kernel 8570.3 200 476.1 N, =137, N. =31
3805.7 40 423 N, =61,N. =20
275.5 40 3.1 N, =31,N. =11
17.2 40 0.2 N, =13,N, =5
Absorption 63.35 2 0.035 N, =137,N. =31
SC naive estimations (n; = 1)
Kernel ~2 x 107 200 ~1.1 x 10° N, =320, N. = 640
~7.2 x 10* 200 3986 N, =192, N, = 64
Absorption ~1.5x 10° 2 81.8 N, =320, N. = 640
530 2 0.3 N, =192, N. = 64

is many-body perturbation theory. The GW approximation
has had success in reproducing the electronic band gap of
a wide variety of materials [24,31,60]. To take into account
excitonic effects, one can solve the BSE [25,29,31], given
by HBSE|A) = Q4|A), where |A) is the exciton eigenvector,
Q, is the exciton energy, and HBSE is the BSE Hamiltonian.
Expressed in the basis of transitions vk — ck (represented by
the ket |cvk)), it is given by

(cvk|HBSE|/v'K')
= (ES" — ES")okxbec b + (cOKIK|CVK), (1)

where the first term on the right side is the independent
particle transition energy, diagonal in the |cvk) basis, and
the second term is the kernel that takes into account the
electron-hole interaction. Efgg)k is the quasiparticle energy for
the conduction ¢ (valence v) state at k, from GW calculations.
The exciton wavefunction projection on the vk — ck basis is
given by A,k = (cvKk|A).

One chooses the number of conduction (N.) and valence
(N,) bands to be large enough to converge absorption peak
energies of interest. In the case of small unit cells, bandwidths
may be as large as a few eV, so the energy of the first absorp-
tion peaks may converge with only a few bands. In the case
of SCs, bandwidths are smaller because of zone folding, so
more bands are necessary. This is similar to isolated molecules
where a few hundred conduction states may be necessary to

converge exciton energies [61], as the energy levels are dis-
persionless in a vacuum supercell. If the SC is Ny, times the
size of a PC, then the SC would demand N, times the number
of valence and conduction bands of PC calculations and 1 /N,
the number of k-points. The total number of kernel matrix
elements in a PC calculation is (N.N,N; )2, so for the SC case,
it will be N2 times the number of matrix elements of the PC
case. In addition to that, direct kernel matrix elements demand
double summations over G-vectors [31], and the total number
of G-vectors increases by a factor of Np. Therefore, each
kernel matrix element becomes much more computationally
demanding, by a factor of erep. The total expense with both
the increased number of matrix elements, and the expense
per matrix element, scales by a factor of Nrtp. To illustrate
this concept, in Table I we show the time spent on GW/BSE
calculations for both PC and SC cases. The computational cost
of kernel calculations increases greatly with the increase of
the number of bands to build the BSE Hamiltonian and is the
most demanding part of our SC GW/BSE workflow [31]. By
contrast, the absorption (diagonalization) step scales as the
square of the matrix dimension, equal to the number of ma-
trix elements, thus only as O(erep), so the kernel calculation
dominates.

Another issue in these calculations is RAM usage. In
particular, BerkeleyGW [31] with standard memory options
stores the matrices M, (K, q, G) = (n, k + G|e/*+®r |/ k)
in RAM to compute kernel matrix elements, which require
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FIG. 1. (a) Diagram showing zone folding of the band structure and exciton coefficients. We show a 1D example of bands being zone
folded in a BZ of a SC four times the size of the PC. Circle radius is proportional to |A.,k|. For the PC calculation, only one valence and one
conduction band are necessary to converge this exciton wavefunction, while for the SC, two valence and two conduction bands are necessary
to represent this exciton, but not four as would be expected from a zone-folding analysis. WASPEs E_A,cond(val) are given by Eq. (2) and give an
estimate of the energy scale for the transitions that need to be included. (b) Diagram showing the replication of the PC to create the SC and
how this affects the BSE Hamiltonian size. Our method provides a BSE Hamiltonian smaller than the one obtained from zone folding.

a memory quantity proportional to (N, + N,)*NZNg. When
moving to the supercell with all the bands from zone folding,
the RAM requirements to compute each kernel matrix element
scale by a factor of Np. Our method, by reducing the number
of bands used, also reduces RAM requirements and makes the
calculations more tractable.

One can try to reduce the size of the BSE Hamiltonian by
performing a convergence study, although this process may be
very expensive, especially for larger SCs. In our method, we
estimate the proper number of valence and conduction bands
based only on the results of PC calculations.

B. Exciton coefficients over the Brillouin zone

For an exciton A, we define the weighted average single-
particle energies (WASPEs) as

QP 2-QP
EA cond T Z |ACUk| Eck ’
cvk
P 2 QP
EXy=Y lAulEY, )
cvk

which define a scale for the relevant transitions that compose
this exciton. We highlight that the quantity

(AIHPSEPIA) =3 " AP (EY — EY )k See o

cvk
QP QP
- EA cond EA val (3)

is the independent particle transition part of the exciton total
energy, or in other words, the exciton total energy minus the
exciton binding energy Q4 — (A|K"|A).

In Fig. 1, we illustrate the basic idea of the method. An
exciton is composed of a linear combination of transitions
from valence to conduction states, and the energy width of
the states that compose that exciton is smaller than the whole

width of the band [56,63], when the transitions that compose
this exciton are localized in the Brillouin zone. In this case,
when zone folding, this band will be split into several bands,
and some of those may not participate in the composition
of that exciton. Therefore, one needs to include in the SC
BSE Hamiltonian only the relevant zone-folded bands for the
excitons of interest. In practice, this means limiting the sums
over the exciton coefficients up to the bands that are inside an
energy window [E™", EM3] We estimate the exciton energy
from PC calculations as

Qzﬂﬁ — Z (Af_,“‘g,‘k,) AE:::( /v/k/lHBSE|cvk) @)
cvk,
oy
where
AP _ Aox/N, ifEY < E™ and ES” > E™n )
“7 o, otherwise
and N is a normalization factor that makes chk |Apa 12 =1.

The more the coefficients A,k are spread in energy, the
more bands will be necessary to build the BSE Hamiltonian,
and the less computational savings for a given accuracy of
the exciton energy can be achieved. Therefore, our method
can be applied for both Wannier excitons (localized in k) and
Frenkel excitons (localized in real space), although one can
expect to achieve a greater reduction of the BSE Hamiltonian
in the Wannier exciton cases, where transitions are localized
in the BZ, such as the ones in Ref. [64]. In the specific case of
LiF, the lowest exciton transitions are localized at the I", but
our approach can be used for other materials like monolayer
MoS;, in which the lowest exciton has energy of 1.88 eV and
is composed of transitions localized at the K point [55]. We
highlight that the current method does not make any assump-
tions about the materials, so it can be applied to any material
where the BSE is applicable.
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FIG. 2. (a) First exciton energy evolution, in comparison to the
full PC BSE calculation €, as a function of the number of valence
(N,) and conduction (N.) bands used to build the BSE Hamilto-
nian. Exciton energy is calculated using Eq. (4). (b) Correlation of
Qrat — QFC with the partial sum of the exciton coefficients, follow-
ing a quadratic relation.

C. Workflow

To make the choice of the proper number of bands, we
recommend the following workflow:

(1) For a PC with lattice vectors aj, a,, az, choose a
desired SC size with lattice vectors Nyay, N>a,, N3az, and a
desired regular SC k-grid Ni,; X N2 X Ni 3 chosen based on
PC calculations.

(2) Perform a converged GW/BSE calculation for the PC
with a finer k-grid Ni N | X NaNi 2 X N3Ny 3. Save the QP en-
ergy levels on this fine grid, the eigenvectors file with the A,k
coefficients, and the BSE Hamiltonian matrix elements. All
these files can be saved in the Absorption step of the BERKE-
LEYGW code [31], version 4.0 (using the flags dump_bse and
write_eigenvectors in the Absorption step). If the BSE
Hamiltonian file is not available, as is the case for earlier
versions or other codes, the BSE Hamiltonian can be recon-
structed using the exciton energies and coefficients through
(V'K |HBSE|cvk) = 3, QUAY o Acuk-

(3) Use the exciton coefficients A,k and QP energy levels
from the PC to estimate the BSE size for the desired preci-
sion of the binding energy in SC calculations. Equation (2)
provides an estimate of the necessary energy window, and
Egs. (4) and (5) can be used to predict the error in the exciton
energy (Fig. 4 below). In Fig. 2, we show how the partial
exciton energy [Eq. (4)] depends on the number of conduction
and valence bands. Alternatively, one can plot how much of
the exciton weight is preserved inside the chosen energy win-
dow, as this quantity has a quadratic relation with the partial
exciton energy [Fig. 2(b)]. We provide a Jupyter notebook

and example data for this analysis [65] that is compatible
with BerkeleyGW [31]. The Jupyter notebook also has the
code necessary to recover the BSE Hamiltonian from the BSE
eigenvectors using the equation at the end of step 2.

The present workflow can be applied to any exciton of
interest (specified by its index). Our Jupyter notebook runs
in just a few minutes on a personal computer, allowing one
to explore the convergence of several excitons. In our case of
LiF, both excitons are localized at I' and their convergence
is quite similar (Fig. 5 below). By contrast, in monolayer
MoS,, the A exciton is localized at K and the C exciton is
composed of transitions at K and around I [55]. In this case,
one needs to make the convergence study for each exciton
separately and use the larger of the number of bands in order
to converge both simultaneously. In general, higher excitons
may spread more in energy and in k space, which would
require more bands to converge. These calculations are done
by selecting the same number of valence (conduction) bands
per k-point, which is what is done in BerkeleyGW as part of
the memory layout to enable efficient parallel matrix-vector
operations [31]. Alternate schemes in which arbitrary pairs of
states are selected could be used to reduce the basis further
but would be inconsistent with this layout for computational
performance. Trying to use folding back to a PC BZ in order to
exclude transitions between different PC k-points is unlikely
to be helpful because cases of interest for a SC calculation
are the ones where there is a breaking of symmetry, and the
mixing of states from different k-points may be important
for the optical properties of interest, e.g., brightening of dark
excitons, so such an approach could save some computational
time but some of the physics may be lost as well.

III. COMPUTATIONAL DETAILS

All calculations in this work were performed for LiF in the
rocksalt structure with the lattice parameter equal to its ex-
perimental value at 300 K, 4.026 A [66—68]. We used ONCV
scalar-relativistic LDA pseudopotentials with standard preci-
sion from Pseudojo [69,70]. Parameters for DFT calculations
are: E., = 80 Ry and a regular I'-centered 4 x 4 x 4 k-grid
for PC calculations. For GW/BSE calculations: coarse and
fine grids are 4 x 4 x 4, and no interpolation from coarse to
fine grids is done. The cutoff energy to build the dielectric
matrix is 20 Ry. We performed GoW,, calculations within the
generalized plasmon pole approximation [24,31] using the
stochastic pseudobands method [34] with an accumulation
window of 2%, two stochastic pseudobands per energy sub-
space, and generating empty states with energy up to the DFT
cutoff (80 Ry). The pseudobands method is useful for large
systems and can result in a two orders-of-magnitude speed-up
in GW calculations on supercells of this size [34], but our
method can be used with or without pseudobands.

The PC BSE Hamiltonian used for the calculation results
is built with five valence and 10 conduction bands. Only three
valence and one conduction bands are necessary to converge
the first optical absorption peaks, and we present later timing
comparisons from this minimal set of bands, but we include
more bands in other calculations to allow a more detailed
exploration of a wider range in the spectrum. Optical absorp-
tion plots reported in this paper were calculated with light
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FIG. 3. Density of states (DOS) at DFT (a) and QP (b) levels for
rocksalt LiF calculations in a two-atom PC (black solid lines) and a
128-atom SC (green dashed lines). Direct band gap energies at the
I"-point are reported in Table II. For DOS calculations, a Gaussian
broadening of 0.1 eV was used. (¢) DFT and QP band structure of
LiF, from PC. In all panels, we set the maximum of the valence band
to be zero.

polarization parallel to the direction —X + $, with the mo-
mentum operator [25,31] (which does not include non-local
effects) for simplicity, as our objective in this work is only to
study the convergence.

The SC is composed of 4 x 4 x 4 PCs and has 128 atoms.
For a faithful comparison, both PC and SC have LiF in the
rocksalt structure, and our objective in this example is to
make SC calculations reproduce results from the PC case.
Therefore, both coarse and fine SC k-grids include only the
I'-point, satisfying the k-grid condition for exact correspon-
dence. Except for the number of conduction and valence states
used to build the BSE Hamiltonian, all other GW /BSE and
DFT parameters are the same as in the PC case.

DFT calculations were performed with the QUANTUM
ESPRESSO code [71-73] (version 7.2) and GW/BSE calcula-
tions were performed with the BERKELEYGW code [24,25,31]
(version 4.0), but this approach is general and can be used by
other codes that solve the BSE.

IV. RESULTS
A. GW results

To test this approach, we show results for rocksalt LiF. For
comparison, we show in Fig. 3 the density of states (DOS) for

the SC and PC calculations at DFT and QP levels. The curves
are almost identical between SC and PC, for both DFT and
QP DOS. For the PC case, we find a GW band gap at I" equal
to 14.502 eV, while for SC, the band gap is 14.550 (Table II).
The band gap difference at the GW level is 48 meV, which is
0.3% of the PC GW gap. The difference is because of the ap-
proximations used in the stochastic pseudobands method [34].
By contrast, the band gap difference at the DFT level is 3 meV,
which is only due to subtle differences in numerical conver-
gence. Because of the offset in the band gap, we will compare
the convergence of the exciton binding energies of PC and
SC calculations, rather than the absolute exciton energies. We
define the binding energy as the QP band gap (which occurs at
k = I') minus the exciton energy, which is a positive number.

B. How to choose the BSE size for SC calculations

Then we calculate the exciton energies for PC LiF using
a4 x4 x4 k-grid, five valence bands, and ten conduction
bands to build the BSE Hamiltonian. Because of the Bril-
louin zone folding, just the I'-point is necessary for SC BSE
calculations. Zone folding leads to 320 valence and 640 con-
duction bands. To choose a reasonable number of bands, we
show Egsa] and E/Slzond for several excitons in Fig. 4. We
note that they generally increase with exciton energy. Valence
band energies vary less than conduction band energies, as the
bandwidth of the conduction band for LiF is larger than for
the valence band (Fig. 3). We also plot the exciton coefficient
distribution for each exciton (corresponding to the color inten-
sity in the figure). The exciton coefficients go out to a few eV
beyond the WASPESs, which indicates that the energy window
needs to include those transitions.

Next, we estimate SC results from PC results focusing on
the first and second absorption peaks [Fig. 5(a)]. In Figs. 5(b)
and 5(c), we plot the expected binding energy variation with
respect to PC results for the first and second absorption peaks,
respectively. The expected binding energy was given by the
expected exciton energy from Eq. (4), subtracted from the
QP energy gap. In our code (provided at [65]), we count
how many valence and conduction states N,, N, are present
in a given energy window [E™" E™™] Then we estimate
the value of Q™" for the BSE size (N.N,N?)?. The expected
binding energy increases roughly monotonically with the BSE
size until it reaches the PC results when the BSE size is equal
to the size of a BSE Hamiltonian obtained by zone folding.
The reference binding energies for the PC can be found in

TABLE II. Band gap at I' at DFT and QP levels, exciton energies for first (€2,) and second (£2,) absorption peaks (Fig. 5), and respective
binding energies E, for calculations in SC and PC. The binding energy is defined as EXX — Q.

gap
This work Other works

Energies (eV) PC SC Theory Experiment

DFT gap at " 8.8723 8.8756 8.91 [13]

QPgapatll 14.502 14.550 14.4 [25], 14.3 [13], 14.5 [38] 14.2 + 0.2 [74]

Q) 12.368 12.570 12.8 [25], 12.7 [13], 12.82 [38] 12.5 [75]

1973 13.581 13.811

Ey; 2.134 1.980 1.6 [25], 1.88 [38]

Ey 0.921 0.739
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FIG. 4. Energy analysis for excitons with energy ranging 11.7
to 20.0 eV. (a)(b) Small dots are the conduction (a) and valence
(b) WASPE:s [Eq. (2)] for excitons with excitation energy 2. Circles
are located at the energies of the states that compose the exciton, and
the color intensity is proportional to |Acok|?, showing the distribu-
tion in energy of the states that compose this exciton. (¢) QP band
structure for PC around the I'-point. Horizontal green lines are the
exciton energies for the first (left) and second (right) bright excitons.
Red (blue) lines are the conduction (valence) WASPE corresponding
to these excitons.

Table II. Beyond the lowest energy excitons, the energy win-
dow to ensure convergence increases, so more bands are
necessary to build the BSE Hamiltonian, as shown in Fig. 4.
To test the quality of the predictions made by PC cal-
culations, we performed SC calculations with different BSE
Hamiltonian sizes, and the agreement between the two data
sets is excellent [Figs. 5(b) and 5(c)]. This shows the ef-
ficiency of our analysis in predicting results for BSE SC
calculations based on the results of PC. In our final result
for SC calculations, the BSE is composed of 137 valence
bands and 31 conduction bands with 1 k-point (just I'), which
means that (1 x 137 x 31)? ~ 18 x 10° matrix elements are
necessary. By zone-folding three valence and one conduc-
tion bands of a k-grid with 64 k-points of the PC into the

12 13 14 15 16 17 18

E (eV)

SC Brillouin zone, the SC calculation would need 3 x 64
valence, 64 conduction bands and 1 k-point, which means
that (3 x 64 x 64 x 1)*> ~ 151 x 10° matrix elements would
be necessary. Therefore, our approach requires only 12% of
the matrix elements one would expect to need from only
using zone folding. The error is 150 meV for the first exciton,
which is 1.2% of the first excitation energy value. In Table I,
we show some time estimation comparisons, showing how
our approach can save around a factor of 10 in the time for
SC BSE calculations, given the reduction in the number of
matrix elements by 12%. Next, we show the optical absorption
spectra for PC and SC cases in Fig. 5(a). We observed that
for energies up to 17 eV, BSE absorption peaks for SC are
blue-shifted by 0.15 eV relative to PC results (Table II), while
no absorption peak is present for energies above 17 eV in the
SC BSE spectrum with the limited number of bands used.

C. Relation of excitonic properties with BSE size

In Fig. 6, we show the evolution of the absorption spec-
tra when varying the size of the SC BSE Hamiltonian. SC
peaks are blue-shifted in comparison to PC results, because
of the variational nature of the BSE diagonalization and
limited number of bands. The peak intensities are under-
estimated as well. As the BSE size increases, the exciton
energies decrease, and the peaks’ intensities increase toward
PC results.

One important aspect to be considered is that because of
zone folding, finite-momentum excitons of PC may be folded
into the SC results. To illustrate this, we show in Fig. 7
the joint density of states (JDOS) of SC calculations and
compare it with the PC case. For a fair comparison, the PC
BSE results must include finite-momentum excitons that will
be folded into the SC Brillouin zone. Our finite momentum
results include excitons with momentum Q [76], where Q is
a g-vector of a regular 4 x 4 x 4 grid. As we increase the
number of bands to build the BSE Hamiltonian, the JDOS gets
closer to PC results with finite momentum excitons. PC JDOS
with just excitons at Q = 0 (I'-point) is zero in the region

Effective BSE size / ZF BSE size
0.0 0.2 0.4 0.6 0.8 1.0

0.00

§ (b) v. “ [ ) (4
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FIG. 5. (a) Optical absorption for PC and SC cases calculated at BSE and QP-random phase approximation (RPA) levels. For the SC, we
used 137 valence and 31 conduction states to build the BSE Hamiltonian. Absorption peaks from SC calculations are blue-shifted by ~0.15 eV.
(b) Convergence of the first exciton binding energy using PC results and Eq. (4) (see text) in blue, and using SC in red, varying the BSE size
(number of matrix elements). The agreement between the two data sets is excellent. (c) Same as (b) but for the second bright exciton. In the
top x axis, the zone-folding (ZF) BSE size is ((3 x 64) x (1 x 64))> ~ 1.5 x 108. The reference binding energies for the PC at full size are in

Table II.
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FIG. 7. Joint density of states (exciton density of states) for PC
calculations (solid and dashed gray lines) compared with SC calcu-
lations with different numbers of conduction and valence states to
build the BSE Hamiltonian. We show two PC calculations, one where
just excitons with zero center-of-mass momentum are included in
the calculation (dashed gray line) and the other where all excitons
with finite momentum Q from a regular grid 4 x 4 x 4 are included
(solid gray line). Due to zone folding, a BSE calculation for the SC
results in excitons corresponding to finite momentum from the PC.
The more bands used to build the BSE Hamiltonian, the closer the
SC exciton JDOS gets to the PC exciton JDOS. Vertical lines are the
energies of the first and second bright excitons (Table II).
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FIG. 8. Optical absorption for rocksalt (RS) LiF and a V,-like
defect, both calculated in a 4 x 4 x 4 SC. Inset: Structure of the
defect in which 2 fluorine atoms are moved towards each other in
the [110] direction.

between 12.5 and 13.0 eV, but in our SC result the JDOS is
finite in agreement with PC JDOS using excitons with finite
momentum. Finite momentum excitons are dark as photons
carry negligible momentum, and here we are comparing PC
and SC calculations for the same RS structure, so the optical
absorption for the two cases is almost identical. However, if
one studies cases where there is a symmetry breaking in the
SC case (e.g., a point defect), which can brighten those dark
excitons, it is necessary to use SC parameters corresponding
to a well-converged PC JDOS as well as absorption spectrum.
In Fig. 7, we show how the JDOS of the SC evolves when
increasing the BSE size, and our choice with 137 valence and
31 conduction bands agrees better with the PC JDOS includ-
ing excitons with finite Q. Full convergence of the JDOS to the
same level as the absorption spectrum would still require more
bands, as the dark and Q # 0 excitons evidently are harder to
converge.

V. Vi-LIKE DEFECT IN LiF

As a proof of concept, we performed a GW/BSE calcula-
tion for a V-center-like defect in LiF [77], and our absorption
spectra results are shown in Fig. 8. V; centers in alkali halides
are defects where the halide atoms get closer to each other,
similar to what is shown in Fig. 8. To accurately represent
the V; center, one would need to include the spin degree
of freedom and relax the excited state [10] for the defect
exciton, which we did not do as it is out of the scope of
this work. This result illustrates how defect calculations can
be performed using our scheme. It uses the same parameters
as our SC BSE calculations reported in Table II, notably the
number of valence and conduction bands used in the BSE,
which was provided by our method. Two fluorine atoms are
moved towards each other in the [110] direction and the dis-
tance between them is 1.4 A. This is a somewhat arbitrary
displacement to break the symmetry which can be used for
further excited-state relaxations [10]. In our BSE results, we
can observe that the two lowest peaks of the case without de-
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fect are still present, and the second lowest peak is redshifted.
In addition to that, new peaks between 6 and 12 eV appear,
which are transitions including midgap defect states.

VI. CONCLUSIONS

We presented in this paper an effective scheme to set
the BSE Hamiltonian size for SC calculations based on PC
results without the need for new convergence studies. We
demonstrated this with detailed analysis of the case of rock-
salt LiF. The scheme is applicable to exact SCs or cases of
slightly perturbed atomic positions, in which case analysis
of finite-momentum excitons in the PC is likely also needed
to converge the unperturbed JDOS as well as the absorption
spectrum. We introduced the weighted average single-particle
energies (WASPEs) for conduction and valence of each exci-
ton to indicate the scale of energies that need to be included in
the SC BSE Hamiltonian, and we further analyzed the energy
window of states participating significantly, which may extend
for another 1-2 eV, to determine the states needed. We found a
reduction of an order of magnitude in the number of matrix el-
ements needed, leading to an order of magnitude reduction in
computational expense for BSE. Our analysis shows that the
kernel matrix calculation is the key concern since its expense
rises more rapidly with supercell size than the absorption
calculation in which the matrix is diagonalized. Our approach
for determining the number of states needed in BSE also
allows one to choose which energy levels GW calculations are
necessary, avoiding unnecessary calculations and making SC
GW/BSE calculations more accessible. Then we showed, as a
proof of concept, BSE calculations on a V-like defect in LiF,

demonstrating the applicability of our method. We provide
a Jupyter notebook and example data [65] with the analysis
from PC results that can be used for materials in general.
This method may be applied to study the optical properties of
SC models such as surfaces, defects, and polarons in diverse
materials, speeding up ab initio results and decreasing RAM
demands of exciton calculations substantially. It also enables
studies of more complex quantum effects in materials, and can
be used within any code that builds the BSE Hamiltonian as
described in the text.
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